Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium

Abstract:
A team of researchers from the University of Leicester and France's G2ELab-CNRS in Grenoble have for the first time observed the growth of free nanoparticles in helium gas in a process similar to the decaffeination of coffee, providing new insights into the structure of nanoparticles.

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium

Leicester, UK | Posted on July 23rd, 2015

Nanoparticles have a very large surface area compared with their volume and are often able to react very quickly. This makes them useful as catalysts in chemical reactions and they are often used in sports equipment, clothing and sunscreens.

In a paper published by the Journal of Physical Chemistry Letters and funded by the Royal Society, The Leverhulme Trust, the British Council and CONACYT, the teams from the University of Leicester's Department of Physics and Astronomy and the CNRS in Grenoble measured how helium ions cluster with neutral helium atoms and grow into nanoparticles.

During the study they examined how helium ions drift through a cell filled with helium atoms. When the pressure of helium was increased the researchers observed a decrease in the mobility of the ions.

Dr Klaus von Haeften from the University of Leicester's Department of Physics and Astronomy, who has received a Visiting Professorship from the University Joseph Fourier, said: "We concluded that the increased pressure forced more and more helium atoms to bind to the ions gradually, until the clusters grew to nanometre-sized particles. This process continued until the nanoparticles reached the maximum size possible which also depended on the temperature.

"Further increase of the pressure was found to reduce the size, which we interpreted as compression. These size changes could then be followed in great detail. For low and moderate pressures the size changed rather rapidly whereas in the high pressure region the changes were slow."

By analysing how quickly the particle volume changed with pressure the researchers were able to investigate the structure of the nanoparticles.

Nelly Bonifaci from the G2ELab-CNRS said: "At low and moderate pressure the nanoparticles were much softer than solid helium and we concluded that they must be liquid. At high pressures they became progressively harder and eventually solid."

Dr von Haeften added: "By choosing helium we were able to study a system of greatest possible purity and our results are therefore very precise. Similar processes occur in the decaffeination of coffee in high pressure carbon dioxide, in dry cleaning and in chemical manufacturing. In all these processes nanoparticles grow. By knowing their size we can much better understand these processes and improve them."

This is the first time that researchers have been able to observe the growth of free nanoparticles in a large range of pressure in gaseous helium.

Frédéric Aitken from the G2ELab-CNRS added: "Our work is an important benchmark for the research on the formation and size of nanoparticles."

###

The original article 'Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression' has appeared in the Journal of Physical Chemistry Letters and is available at http://dx.doi.org/10.1021/acs.jpclett.5b01159

About the Leverhulme Trust:

The Leverhulme Trust was established by the Will of William Hesketh Lever, the founder of Lever Brothers. Since 1925 the Trust has provided grants and scholarships for research and education; today it is one of the largest all-subject providers of research funding in the UK, distributing approximately £80 million a year. For more information: www.leverhulme.ac.uk @LeverhulmeTrust

About the British Council

The British Council is the UK's international organisation for cultural relations and educational opportunities. We create international opportunities for the people of the UK and other countries and build trust between them worldwide.

We work in more than 100 countries and our 8,000 staff - including 2,000 teachers - work with thousands of professionals and policy makers and millions of young people every year by teaching English, sharing the arts and delivering education and society programmes.

We are a UK charity governed by Royal Charter. A core publicly-funded grant provides 20 per cent of our turnover which last year was £864 million. The rest of our revenues are earned from services which customers around the world pay for, such as English classes and taking UK examinations, and also through education and development contracts and from partnerships with public and private organisations. All our work is in pursuit of our charitable purpose and supports prosperity and security for the UK and globally.

For more information, please visit: www.britishcouncil.org. You can also keep in touch with the British Council through twitter.com/britishcouncil and blog.britishcouncil.org.

####

For more information, please click here

Contacts:
Dr. Klaus von Haeften

Copyright © University of Leicester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Sports

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Personal Care/Cosmetics

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018

Programmable materials find strength in molecular repetition May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project