Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Collagen nanofibrils in mammalian tissues get stronger with exercise

A collagen fibril mounted on a MEMS mechanical testing device. At the bottom is a single human hair for size comparison.

CREDIT
University of Illinois Department of Aerospace Engineering
A collagen fibril mounted on a MEMS mechanical testing device. At the bottom is a single human hair for size comparison. CREDIT University of Illinois Department of Aerospace Engineering

Abstract:
Collagen is the fundamental building block of muscles, tissues, tendons, and ligaments in mammals. It is also widely used in reconstructive and cosmetic surgery. Although scientists have a good understanding about how it behaves at the tissue-level, some key mechanical properties of collagen at the nanoscale still remain elusive. A recent experimental study conducted by researchers at the University of Illinois at Urbana-Champaign, Washington University, and Columbia University on nanoscale collagen fibrils reported on, previously unforeseen, reasons why collagen is such a resilient material.

Collagen nanofibrils in mammalian tissues get stronger with exercise

Upton, NY | Posted on December 14th, 2018

Because one collagen fibril is about one millionth in size of the cross-section of a human hair, studying it requires equally small equipment. The group in the Department of Aerospace Engineering at U of I designed tiny devices--Micro-Electro-Mechanical Systems--smaller than one millimeter in size, to test the collagen fibrils.

"Using MEMS-type devices to grip the collagen fibrils under a high magnification optical microscope, we stretched individual fibrils to learn how they deform and the point at which they break," said Debashish Das, a postdoctoral scholar at Illinois who worked on the project. "We also repeatedly stretched and released the fibrils to measure their elastic and inelastic properties and how they respond to repeated loading."

Das explained, "Unlike a rubber band, if you stretch human or animal tissue and then release it, the tissue doesn't spring back to its original shape immediately. Some of the energy expended in pulling it is dissipated and lost. Our tissues are good at dissipating energy-when pulled and pushed, they dissipate a lot of energy without failing. This behavior has been known and understood at the tissue-level and attributed to either nanofibrillar sliding or to the gel-like hydrophilic substance between collagen fibrils. The individual collagen fibrils were not considered as major contributors to the overall viscoelastic behavior. But now we have shown that dissipative tissue mechanisms are active even at the scale of a single collagen fibril."

A very interesting and unexpected finding of the study is that collagen fibrils can become stronger and tougher when they are repeatedly stretched and let to relax.

"If we repeatedly stretch and relax a common engineering structure, it is more likely to become weaker due to fatigue," said U of I Professor Ioannis Chasiotis. "While our body tissues don't experience anywhere near the amount of stress we applied to individual collagen fibrils in our lab experiments, we found that after crossing a threshold strain in our cyclic loading experiments, there was a clear increase in fibril strength, by as much as 70 percent."

Das said the collagen fibrils themselves contribute significantly to the energy dissipation and toughness observed in tissues.

"What we found is that individual collagen fibrils are highly dissipative biopolymer structures. From this study, we now know that our body dissipates energy at all levels, down to the smallest building blocks. And properties such as strength and toughness are not static, they can increase as the collagen fibrils are exercised," Das said.

What's the next step? Das said with this new understanding of the properties of single collagen fibrils, scientists may be able to design better dissipative synthetic biopolymer networks for wound healing and tissue growth, for example, which would be both biocompatible and biodegradable.

###

The research was supported by the National Science Foundation and National Institutes of Health and by the National Science Foundation Science and Technology Center for Engineering MechanoBiology. Das' effort was supported by a grant from the National Science Foundation.

####

For more information, please click here

Contacts:
Ioannis Chasiotis

217-244-1474

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study "Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening," was co-authored by Julia Liu, Debashish Das, Fan Yang, Andrea G. Schwartz, Guy M. Genin, Stavros Thomopoulos, and Ioannis Chasiotis. It is published in Acta Biomaterialia.:

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Govt.-Legislation/Regulation/Funding/Policy

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Nanomedicine

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Sports

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Nanobiotechnology

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Nanoparticles’ movement reveals whether they can successfully target cancer: Targeting nanoparticles rotate faster and move across larger areas August 9th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project