Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching

For the first time a light beam switches a single molecule to closed state (red atoms). At the ends of the diarylethene molecule gold electrodes are attached. This way, the molecule functions as an electrical switch.
CREDIT: HZDR/Pfefferkorn
For the first time a light beam switches a single molecule to closed state (red atoms). At the ends of the diarylethene molecule gold electrodes are attached. This way, the molecule functions as an electrical switch.

CREDIT: HZDR/Pfefferkorn

Abstract:
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching

Dresden, Germany | Posted on April 20th, 2015

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller - while also more energy efficient - components or sensors: "Single molecules are currently the smallest imaginable components capable of being integrated into a processor." Scientists have yet to succeed in tailoring a molecule so that it can conduct an electrical current and that this current can be selectively turned on and off like an electrical switch.

This requires a molecule in which an otherwise strong bond between individual atoms dissolves in one location - and forms again precisely when energy is pumped into the structure. Dr. Jannic Wolf, chemist at the University of Konstanz, discovered through complex experiments that a particular diarylethene compound is an eligible candidate. The advantages of this molecule, approximately three nanometres in size, are that it rotates very little when a point in its structure opens and it possesses two nanowires that can be used as contacts. The diarylethene is an insulator when open and becomes a conductor when closed. It thus exhibits a different physical behaviour, a behaviour that the scientists from Konstanz and Dresden were able to demonstrate with certainty in numerous reproducible measurements for the first time in a single molecule.

A computer from a test-tube

A special feature of these molecular electronics is that they take place in a fluid within a test-tube, where the molecules are contacted within the solution. In order to ascertain what effects the solution conditions have on the switching process, it was therefore necessary to systematically test various solvents. The diarylethene needs to be attached at the end of the nanowires to electrodes so that the current can flow. "We developed a nanotechnology at the HZDR that relies on extremely thin tips made of very few gold atoms. We stretch the switchable diarylethene compound between them," explains Dr. Erbe.

When a beam of light then hits the molecule, it switches from its open to its closed state, resulting in a flowing current. "For the first time ever we could switch on a single contacted molecule and prove that this precise molecule becomes a conductor on which we have used the light beam," says Dr. Erbe, pleased with the results. "We have also characterized the molecular switching mechanism in extremely high detail, which is why I believe that we have succeeded in making an important step toward a genuine molecular electronic component."

Switching off, however, does not yet work with the contacted diarylethene, but the physicist is confident: "Our colleagues from the HZDR theory group are computing how precisely the molecule must rotate so that the current is interrupted. Together with the chemists from Konstanz, we will be able to accordingly implement the design and synthesis for the molecule." However, a great deal of patience is required because it's a matter of basic research. The diarylethene molecule contact using electron-beam lithography and the subsequent measurements alone lasted three long years. Approximately ten years ago, a working group at the University of Groningen in the Netherlands had already managed to construct a switch that could interrupt the current. The off-switch also worked only in one direction, but what couldn't be proven at the time with certainty was that the change in conductivity was bound to a single molecule.

Nano-electronics in Dresden

One area of research focus in Dresden is what is known as self-organization. "DNA molecules are, for instance, able to arrange themselves into structures without any outside assistance. If we succeed in constructing logical switches from self-organizing molecules, then computers of the future will come from test-tubes," Dr. Erbe prophesizes. The enormous advantages of this new technology are obvious: billion-euro manufacturing plants that are necessary for manufacturing today's microelectronics could be a thing of the past. The advantages lie not only in production but also in operating the new molecular components, as they both will require very little energy.

With the Helmholtz Research School NANONET, the conditions for investigating and developing the molecular electronics of tomorrow are quite positive in Dresden. In addition to the HZDR, the Technische Universität Dresden, Leibniz-Institute of Polymer Research Dresden (IPF), the Fraunhofer Institute for Ceramic Technology and Systems (IKTS) and the NaMLab gGmbH all participate in running the structured doctoral program.

####

About Helmholtz-Zentrum Dresden-Rossendorf
The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It has been a member of the Helmholtz Association, Germany's largest research organization, since 2011. Several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users. The HZDR employs about 1,000 people - approximately 500 of whom are scientists, including 150 doctoral candidates.

For more information, please click here

Contacts:
Christine Bohnet

49-351-260-2450

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project