Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists unveil first method for controlling the growth of metal crystals

Abstract:
Researchers have announced the first ever method for controlling the growth of metal-crystals from single atoms.

Scientists unveil first method for controlling the growth of metal crystals

Coventry, UK | Posted on May 27th, 2014

Published in the journal Nature Communications and developed at the University of Warwick, the method, called Nanocrystallometry, allows for the creation of precise components for use in nanotechnology.

Professor Peter Sadler from the University's Department of Chemistry commented that "The breakthrough with Nanocrystallometry is that it actually allows us to observe and directly control the nano-world in motion".

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium the researchers were able to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3D metal-crystals.

"Tailoring nanoscopic objects is of enormous importance for the production of the materials of the future", says Dr Barry from the University's Department of Chemistry. "Until now the formation of metal nanocrystals, which are essential to those future materials, could not be controlled with precision at the level of individual atoms, under mild and accessible conditions."

Prof. Sadler says: "Nanocrystallometry's significance is that it has made it possible to grow with precision metal-crystals which can be as small as only 0.00000015cm, or 15 ångström, wide. If a nanodevice requires a million osmium atoms then from 1 gram of osmium we can make about 400 thousand devices for every person on this earth. Compared to existing methods of crystal growth Nanocrystallometry offers a significant improvement in the economic and efficient manufacture of precision nanoscopic objects."

The researchers argue that the new method possesses a range of potential uses. "We envision the use Nanocrystallometry to build precise, atomic-level electronic circuits and new nano-information storage devices. The method also has significant potential for use in the biosensing of drugs, DNA and gases as well for creating unique nano-patterns on surfaces for security labelling and sealing confidential documents. Nanocrystallometry is also an innovative method for producing new metal nano-alloys, and many combinations can be envisaged. They may have very unusual and as yet unexplored properties", commented Dr Barry.

Nanocrystallometry was made possible by state-of-the-art facilities that are only to be found in the UK at the University of Warwick. "The advances in have been made possible thanks to our use of a state-of-the-art aberration-corrected high-resolution transmission electron microscope, the only one microscope of this kind in the UK, that has the potential to image individual atoms in this way. We know that things are made of atoms, but it is really rare to see them dancing in front of your eyes", says Dr Richard Beanland from the University's Department of Physics.

Commenting on the commercial potential for Nanocrystallometry Andrew Lee, Business Development Manager at Warwick Ventures said: "We think that the team's technique could be a real break-through in terms of offering the capability for micromanipulation and derivatization of a graphene surface; seeing multiple commercial opportunities arising in the future. We have put a patent application in place and we are actively seeking industrial partners with whom to collaborate in the future."

####

For more information, please click here

Contacts:
Tom Frew

44-024-765-75910

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Chip Technology

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Materials/Metamaterials

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Tools

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project