Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists unveil first method for controlling the growth of metal crystals

Abstract:
Researchers have announced the first ever method for controlling the growth of metal-crystals from single atoms.

Scientists unveil first method for controlling the growth of metal crystals

Coventry, UK | Posted on May 27th, 2014

Published in the journal Nature Communications and developed at the University of Warwick, the method, called Nanocrystallometry, allows for the creation of precise components for use in nanotechnology.

Professor Peter Sadler from the University's Department of Chemistry commented that "The breakthrough with Nanocrystallometry is that it actually allows us to observe and directly control the nano-world in motion".

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium the researchers were able to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3D metal-crystals.

"Tailoring nanoscopic objects is of enormous importance for the production of the materials of the future", says Dr Barry from the University's Department of Chemistry. "Until now the formation of metal nanocrystals, which are essential to those future materials, could not be controlled with precision at the level of individual atoms, under mild and accessible conditions."

Prof. Sadler says: "Nanocrystallometry's significance is that it has made it possible to grow with precision metal-crystals which can be as small as only 0.00000015cm, or 15 ångström, wide. If a nanodevice requires a million osmium atoms then from 1 gram of osmium we can make about 400 thousand devices for every person on this earth. Compared to existing methods of crystal growth Nanocrystallometry offers a significant improvement in the economic and efficient manufacture of precision nanoscopic objects."

The researchers argue that the new method possesses a range of potential uses. "We envision the use Nanocrystallometry to build precise, atomic-level electronic circuits and new nano-information storage devices. The method also has significant potential for use in the biosensing of drugs, DNA and gases as well for creating unique nano-patterns on surfaces for security labelling and sealing confidential documents. Nanocrystallometry is also an innovative method for producing new metal nano-alloys, and many combinations can be envisaged. They may have very unusual and as yet unexplored properties", commented Dr Barry.

Nanocrystallometry was made possible by state-of-the-art facilities that are only to be found in the UK at the University of Warwick. "The advances in have been made possible thanks to our use of a state-of-the-art aberration-corrected high-resolution transmission electron microscope, the only one microscope of this kind in the UK, that has the potential to image individual atoms in this way. We know that things are made of atoms, but it is really rare to see them dancing in front of your eyes", says Dr Richard Beanland from the University's Department of Physics.

Commenting on the commercial potential for Nanocrystallometry Andrew Lee, Business Development Manager at Warwick Ventures said: "We think that the team's technique could be a real break-through in terms of offering the capability for micromanipulation and derivatization of a graphene surface; seeing multiple commercial opportunities arising in the future. We have put a patent application in place and we are actively seeking industrial partners with whom to collaborate in the future."

####

For more information, please click here

Contacts:
Tom Frew

44-024-765-75910

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Chip Technology

Basque researchers turn light upside down February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Memory Technology

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanoelectronics

Basque researchers turn light upside down February 23rd, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Tools

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project