Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers model macroscale plasmonic convection to control fluid and particle motion

Depiction of the fluid convection (arrows) overlaid on the background temperature distribution produced by the BNAs and ITO. Inset shows the BNA geometry with a (false color) scanning electron microscope image of a single bowtie; scale bar is 200 nm.
Depiction of the fluid convection (arrows) overlaid on the background temperature distribution produced by the BNAs and ITO. Inset shows the BNA geometry with a (false color) scanning electron microscope image of a single bowtie; scale bar is 200 nm.

Abstract:
Researchers at Illinois have developed a new theoretical model that explains macroscale fluid convection induced by plasmonic (metal) nanostructures. Their model demonstrates the experimentally observed convection velocities of the order of micrometers per second for an array of gold bowtie nanoantennas (BNAs) coupled to an optically absorptive indium-tin-oxide (ITO) substrate.

Researchers model macroscale plasmonic convection to control fluid and particle motion

Urbana, IL | Posted on January 22nd, 2014

"Plasmonics offers numerous opportunities to control fluid motion using light absorption," explained Kimani Toussaint, an associate professor in the Department of Mechanical Science and Engineering (MechSE). "The common understanding in the literature is that the observation of micron/s particle motion in plasmonic tweezers experiments can be accurately modeled if one increased the number of nanostructures—for example, nanoantennas—in the array. We showed that this alone would not explain the phenomena. The ITO is the critical piece to the puzzle,"

"This first collaborative study opens doors to investigate phenomena such as particle separation, nanobubble generation, and optical switching. Computations provide a complementary approach to laboratory observations," said MechSE emeritus professor Pratap Vanka, a co-author of the study. Results of the plasmon-induced convection research, with electrical and computer engineering graduate students Brian Roxworthy and Abdul Bhuiya, have been published in the January issue of Nature Communications.

"This work is the first to establish both theoretically and experimentally that micron/s fluid velocities can be generated using a plasmonic architecture, and provides important insight into the flows affecting particle dynamics in plasmonic optical trapping experiments. And our system can be integrated into microfluidic environments to enable greater dexterity in fluid handling and temperature control," Roxworthy said.

The model uses a set of coupled partial differential equations describing the electromagnetic, heat-transfer, and fluid mechanics phenomena, which is solved using COMSOL Multiphysics, a commercial software package. In the study, gold BNAs are illuminated by 2.5 mW of laser light at three different wavelengths, whereby each wavelength corresponds to be on-, near-, or off-resonance with respect to the plasmon resonance wavelength of the BNAs. A solution containing dielectric, spherical particles with diameters of 1 to 20 microns are placed on the BNAs and used to trace the generated fluid flows.

The development of the model led the researchers to several important conclusions. It allowed them to understand the high-velocity particle motion observed in experiments with plasmonic tweezers, and they realized that inclusion of an ITO layer is critical in distributing the thermal energy created by the BNAs—a fact that has previously been overlooked. Additionally, they found that the ITO alone could be used as a simple, alternative route to achieving fluid convection in lab-on-a-chip environments. The researchers also observed that the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption.

####

For more information, please click here

Contacts:
Kimani Toussaint

217-244-4088

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Software

Researchers from the California NanoSystems Institute at UCLA have created a new technique that greatly enhances digital microscopy images January 27th, 2016

Digital Surf launches revolutionary SEM image colorization January 26th, 2016

Materials scientists at FAU reconstruct turbine material atom by atom in computer simulations January 19th, 2016

NanoOK: Quality Control for portable, rapid, low-cost DNA sequencing December 21st, 2015

Leti to Collaborate with Keysight Technologies To Enable Expansion of FD-SOI Technology: Agreement with Industry-leading, Device-modeling Software Supplier Will Improve Access to Leti-UTSOI Extraction Methodology December 7th, 2015

Lab-on-a-chip

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

Photons on a chip set new paths for secure communications November 16th, 2015

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Tools

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic