Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers model macroscale plasmonic convection to control fluid and particle motion

Depiction of the fluid convection (arrows) overlaid on the background temperature distribution produced by the BNAs and ITO. Inset shows the BNA geometry with a (false color) scanning electron microscope image of a single bowtie; scale bar is 200 nm.
Depiction of the fluid convection (arrows) overlaid on the background temperature distribution produced by the BNAs and ITO. Inset shows the BNA geometry with a (false color) scanning electron microscope image of a single bowtie; scale bar is 200 nm.

Abstract:
Researchers at Illinois have developed a new theoretical model that explains macroscale fluid convection induced by plasmonic (metal) nanostructures. Their model demonstrates the experimentally observed convection velocities of the order of micrometers per second for an array of gold bowtie nanoantennas (BNAs) coupled to an optically absorptive indium-tin-oxide (ITO) substrate.

Researchers model macroscale plasmonic convection to control fluid and particle motion

Urbana, IL | Posted on January 22nd, 2014

"Plasmonics offers numerous opportunities to control fluid motion using light absorption," explained Kimani Toussaint, an associate professor in the Department of Mechanical Science and Engineering (MechSE). "The common understanding in the literature is that the observation of micron/s particle motion in plasmonic tweezers experiments can be accurately modeled if one increased the number of nanostructures—for example, nanoantennas—in the array. We showed that this alone would not explain the phenomena. The ITO is the critical piece to the puzzle,"

"This first collaborative study opens doors to investigate phenomena such as particle separation, nanobubble generation, and optical switching. Computations provide a complementary approach to laboratory observations," said MechSE emeritus professor Pratap Vanka, a co-author of the study. Results of the plasmon-induced convection research, with electrical and computer engineering graduate students Brian Roxworthy and Abdul Bhuiya, have been published in the January issue of Nature Communications.

"This work is the first to establish both theoretically and experimentally that micron/s fluid velocities can be generated using a plasmonic architecture, and provides important insight into the flows affecting particle dynamics in plasmonic optical trapping experiments. And our system can be integrated into microfluidic environments to enable greater dexterity in fluid handling and temperature control," Roxworthy said.

The model uses a set of coupled partial differential equations describing the electromagnetic, heat-transfer, and fluid mechanics phenomena, which is solved using COMSOL Multiphysics, a commercial software package. In the study, gold BNAs are illuminated by 2.5 mW of laser light at three different wavelengths, whereby each wavelength corresponds to be on-, near-, or off-resonance with respect to the plasmon resonance wavelength of the BNAs. A solution containing dielectric, spherical particles with diameters of 1 to 20 microns are placed on the BNAs and used to trace the generated fluid flows.

The development of the model led the researchers to several important conclusions. It allowed them to understand the high-velocity particle motion observed in experiments with plasmonic tweezers, and they realized that inclusion of an ITO layer is critical in distributing the thermal energy created by the BNAs—a fact that has previously been overlooked. Additionally, they found that the ITO alone could be used as a simple, alternative route to achieving fluid convection in lab-on-a-chip environments. The researchers also observed that the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption.

####

For more information, please click here

Contacts:
Kimani Toussaint

217-244-4088

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Software

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Lab-on-a-chip

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Artificial molecules April 3rd, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

Discoveries

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Tools

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic