Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Home > Press > Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer

Oxford Instruments Plasma Technology, a leading supplier of plasma etch and deposition high volume manufacturing (HVM) solutions to major Compound Semiconductor (CS) device manufacturers, has had its remote plasma Atomic Layer Deposition (ALD) nitride passivation solution qualified for full production by a US-based market leading power electronics manufacturer of GaN devices to support the first phase of its ramp.

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer

Yatton, UK | Posted on December 17th, 2021

GaN-based devices are now well established in the consumer market, with a wide range of rapid chargers available commercially to support mobile devices. Fast charging and a smaller footprint are among the key benefits of GaN technology and are accelerating the rapid adoption with consumers. The Atomfab ALD system delivers the wafer demand required to meet the cost of ownership of HVM GaN device manufacturers.

“Atomfab is able to significantly reduce the cost per wafer through unique technical innovations including a patent-pending low damage revolutionary fast remote plasma source which delivers higher quality Al2O3 films compared to thermal ALD’ says Dr Aileen O’Mahony, ALD Product Manager, Oxford Instruments. Dr O’Mahony continues: “Combining the plasma pre-treatment and film quality benefits of plasma ALD without compromising on throughput or quality is a step change to achieve the wafer ramp and yield our customers demanded.”

Atomfab fulfils customer needs on a single wafer platform with SEMI standard cluster configurations and improved process controls for the latest compound semiconductor solutions. For this customer, the system was fully and seamlessly integrated into their manufacturing line and fab automation software.

Oxford Instruments Service Director, Dean Furlong adds, “Factory automation and monitoring is of high importance in fab manufacturing lines. Integration to these systems is equally important as the wafers themselves. These systems are built into all of Oxford Instruments production equipment. Following industry standards allowed this customer to quickly interface its factory automation software into our system”


About Oxford Instruments Plasma Technology
Oxford Instruments Plasma Technology offers flexible, configurable process tools and leading-edge processes for the precise, controllable and repeatable engineering of micro- and nano-structures. Our systems provide process solutions for the etching of nanometre sized features, nanolayer deposition and the controlled growth of nanostructures.

These solutions are based on core technologies in plasma-enhanced deposition and etch, ion-beam deposition and etch, atomic layer deposition, deep silicon etch and physical vapour deposition. Products range from compact stand-alone systems for R&D, through batch tools and up to clustered cassette-to-cassette platforms for high-throughput production processing.

About Oxford Instruments plc

Oxford Instruments designs, supplies, and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for 60 years, supporting its core purpose to address some of the world’s most pressing challenges.

The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company and is listed on the FTSE250 index of the London Stock Exchange (OXIG). Its strategy focuses on being a customer-centric, market-focused Group, understanding the technical and commercial challenges faced by its customers. Key market segments include Semiconductor & Communications, Advanced Materials, Healthcare & Life Science, and Quantum Technology.

Their portfolio includes a range of core technologies in areas such as low temperature and high magnetic field environments; Nuclear Magnetic Resonance; X-ray, electron, laser, and optical based metrology; atomic force microscopy; optical imaging; and advanced growth, deposition and etching.

Oxford Instruments is helping enable a greener economy, increased connectivity, improved health and leaps in scientific understanding. Their advanced products and services allow the world’s leading industrial companies and scientific research communities to image, analyse and manipulate materials down to the atomic and molecular level, helping to accelerate R&D, increase manufacturing productivity and make ground-breaking discoveries.

For more information, please click here

Claire Critchell
Marketing Communications Manager
Oxford Instruments Plasma Technology

T: +44 (0) 7776 171943

Copyright © Oxford Instruments Plasma Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022


Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020


Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022


JEOL Introduces New Scanning Electron Microscope with “Simple SEM” Automation and Live Elemental and 3D Analysis January 14th, 2022

Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022

Researchers use electron microscope to turn nanotube into tiny transistor December 24th, 2021

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project