Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Measuring progress in nanotech design

Tracking a nanowire device's photocurrent responses, created by varying the wavelengths of a laser, will allow Drexel researchers to make measurements and adjustments that could help them design more efficient and smaller components for smartphones, laptops and even solar panels.
Tracking a nanowire device's photocurrent responses, created by varying the wavelengths of a laser, will allow Drexel researchers to make measurements and adjustments that could help them design more efficient and smaller components for smartphones, laptops and even solar panels.

Abstract:
Engineers working in the nanoscale will have a new tool at their disposal thanks to an international group of researchers led by Drexel University's College of Engineering. This innovative procedure could alleviate the persistent challenge of measuring key features of electron behavior while designing the ever-shrinking components that allow cell phones, laptops and tablets to get increasingly thinner and more energy efficient.

Measuring progress in nanotech design

Philadelphia, PA | Posted on September 4th, 2013

"The interface between two semiconductor materials enables most of the electronic gadgets we use each day, from computers to mobile phones, displays and solar cells," said Guannan Chen, a graduate student in Drexel's Materials Science and Engineering department and the lead author of the group's report, which was recently published in Nano Letters. "One of the most important features of the interface is the height of the energy step required for the electron to climb over, known as band offset. Current methods for measuring this step height in planar devices are not practical for nanoscale devices, however, so we set off to find a better way to make this measurement."

Measuring the band offset faced by electrons jumping from one material to another is a key component of the design process because it guides the redesign and prototyping of nanoscale components in order to make them as efficient and effective as possible.

Using laser-induced current in a nanowire device and its dependence on the wavelength of the laser, the team devised a new method to derive the band offset. As they continuously change the wavelength of the laser, they measure the photocurrent responses. From this data they are able to determine the band offset.

"Using the interface within a co-axial core-shell semiconductor nanowire as a model system, we made direct measurements of the band offset for the first time in nanowire electronics," Chen said. "This is a significant cornerstone to freely design new nanowire devices such as solar cells, LEDs, and high speed electronics for wireless communications. This work can also extend to broader material systems which can be tailored for specific application."

The study, which was funded primarily by the National Science Foundation, also included researchers from Lehigh University, National Research Council - Institute for Microelectronics and Microsystems (IMM-CNR) and the University of Salento in Italy, Weizmann Institute of Science and Negev Nuclear Research Center in Israel and the University of Alabama. Each group added a key component to the project.

"Teamwork and close collaborations are essential in this work," said Guan Sun, the lead researcher from Lehigh. "The smooth channel of sharing ideas and experiment resources is valuable within the team because the quality and variety of the material system is vital to achieving accurate results."

While Drexel's members designed the experiments, processed the materials, made the nanowire device and conducted spectroscopic experiments, Sun and Yujie Ding, from Lehigh, supported the research with complementary optical experiments.

The collaborators from the IMM-CNR, Paola Prete, and the University of Salento, Ilio Miccoli and Nico Lovergine joined forces with Hadas Shtrikman, from Weizmann Institute of Science to produce the high quality nanowire used in the testing. Patrick Kung, from the University of Alabama, analyzed the composition of the nanowire at the atomic level, and Tsachi Livneh, of Negev Nuclear Research Center, contributed to the analyses.

"This remarkably simple approach to obtaining a key characteristic in individual nanowires is an exciting advance," said Dr. Jonathan Spanier, a professor in Drexel's College of Engineering who is the lead investigator of the project. "We anticipate it will be a valuable method as we develop nanoscale electronic devices having completely new and important functionalities."

With a better understanding of the material and electron behavior, the team will continue to pursue novel nanoscale optoelectronic devices such as new-concept transistors, electron-transfer devices and photovoltaic devices.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-5161
Mobile: 215-796-5161

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read Abstract:

Related News Press

Imaging

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

News and information

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Chip Technology

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Optical computing/Photonic computing

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Tools

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic