Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microchip proves tightness provokes precocious sperm release

Sperm cell release can be triggered by tightening the grip around the delivery organ, according to a team of nano and microsystems engineers and plant biologists at the University of Montreal and Concordia University. Concordia's nanobiotech team devised a microchip that enabled the University of Montreal biologists to observe what happened when pollen tubes -- the sperm delivery tools used by plants -- tried to negotiate a microscopic obstacle course.

Credit: Universite de Montreal and Concordia University
Sperm cell release can be triggered by tightening the grip around the delivery organ, according to a team of nano and microsystems engineers and plant biologists at the University of Montreal and Concordia University. Concordia's nanobiotech team devised a microchip that enabled the University of Montreal biologists to observe what happened when pollen tubes -- the sperm delivery tools used by plants -- tried to negotiate a microscopic obstacle course.

Credit: Universite de Montreal and Concordia University

Abstract:
Sperm cell release can be triggered by tightening the grip around the delivery organ, according to a team of nano and microsystems engineers and plant biologists at the University of Montreal and Concordia University. Concordia's nanobiotech team devised a microchip that enabled the University of Montreal biologists to observe what happened when pollen tubes - the sperm delivery tools used by plants - tried to negotiate a microscopic obstacle course. The pollen tubes were exposed to a series of narrow, elastic openings resulting in a variety of cellular responses. When the opening was too narrow or tight, pollen tube growth stalled. However, the elongating tubes successfully penetrated slightly larger openings. Curiously, the pollen tubes burst and released the sperm cells when passing openings of a particular size relative to the pollen tube width.

Microchip proves tightness provokes precocious sperm release

Montreal, Canada | Posted on April 29th, 2013

The microchip was designed to imitate the mechanical challenges that the female flower tissues place in the path of the rapidly growing pollen tube on its way to the egg cell. Unlike its human counterpart, a microscopic single-cell organ undertakes sperm delivery in plants: a cylindrical protuberance formed by the male gametophyte, the pollen grain. "Similarly to elongated human cells such as neurons, the pollen tubes are tip growing cells that invade other tissues, in this case those of the female flower organs. Unlike those found in humans or other animals, the invasive ability of tip growing cells in plants remain largely unexplored. Our goal was to address this lack of knowledge using pollen tubes, whose invasive life style is the fundamental underpinning of sexual reproduction in flowering plants," said senior co-author Anja Geitmann of the University of Montreal. "Since they are encased in a stiff cellular envelope, plant cells grow and invade differently from animal cells," explained Concordia University senior co-author Muthukumaran Packirisamy. "From a mechanical point of view, the process of pollen tube elongation is similar to that of a balloon catheter used for angioplasty - forces are generated based on the principle of a hydroskeleton, or fluid under pressure. We designed microchannels through which the pollen tubes had to forcefully squeeze in order to continue their elongation."

Microsystems technology was required to undertake this experiment due to the tiny size of pollen tubes and the consequently minute amount of force they exert to accomplish penetration. The pollen tube requires not only an invasive force to overcome the mechanical resistance of the surrounding tissue, but also the protection of the contents that is to be transported, the sperm cells, of which there are exactly two in each tube. It is crucial that the pollen tube remains tubular while winding its way through the pistil, since kinks and collapses of this catheter-like organ prevent the passage of the sperm cells, similar to a blockage in a twisted garden hose. A typical pollen tube can become many centimeters long but is only between 5 and 20 micrometres wide. By way of comparison, a human hair is typically 100 micrometres thick. "To fit the dimensions of this cell, we had to design the microchip with microscopic channels and obstacles that are narrower than the pollen tubes. We used high resolution soft and direct write lithography techniques to produce this micron-sized obstacle course. Furthermore, measuring the pressure that pollen tubes exert requires materials that are just the right consistency - not too hard and not too soft. We chose an elastic polymer material, and as the tubes deformed the material at some levels of tightness, we can be certain that the softness was just right. Mechanical modeling allowed us to calculate the forces exerted by these cells. Lab-on-a-Chip (LOC) technology allows us to assess cellular behavior much better than the conventional Petri dish," Packirisamy said.

Sexual reproduction in plants is in many ways analogous to human biology. "In order to find its path to the ovule and the egg cell, the pollen tube has to invade a series of female tissues in the receptive flower," Geitmann explained. "The male and the female organs continuously communicate during the process. The female aids the process by lubricating the path, but the male exerts significant force to overcome any residual resistance." The pollen tube must penetrate through a central canal that connects the stigma, or pollen landing platform, to the ovary, the organ that houses the ovules. Upon reaching the ovary, it then passes onto the internal surface of the placenta, finds and enters the opening in the ovule, and finally bursts open when connecting with the egg cell, enabling its fertilization by one of the two sperm cells it delivers. The other sperm cell fertilizes another cell of the female gametophyte to give rise to a tissue that nourishes the growing embryo.

How the timely discharge of the sperm cells is triggered in plants has essentially been unknown. The control of this process is crucial for successful fertilization and seed set, since plant sperm is not motile and must therefore be delivered precisely to its target. A precocious discharge (before the pollen tube reaches the ovule) will not allow the sperm cells to reach the egg, whereas on the other hand, a failure to discharge equally precludes fertilization. "Our findings show that a tight grip around the tube does result in sperm release. This illustrates that plant cells perceive and respond to mechanical stimuli," Geitmann said. "However, the particularities of the cellular responses we observed suggest that other factors, such as protein-based signals, are likely to be in play." The researchers believe that these particularities and the mechanisms that control pollen tube diameter and growth behavior warrant further research. "We're still not sure exactly what causes the sperm cell release from the pollen tube in vivo, but a mechanical trigger might be part of the signaling mechanism," Packirisamy said.

###

About this study:

Amir Sanati Nezhad, Mahsa Naghavi, Muthukumaran Packirisamy, Rama Bhat and Anja Geitmann published "Quantification of cellular penetrative forces using Lab-on-a-Chip technology and finite element modeling" in the Proceedings of the National Academy of Sciences. This study received funding from Fonds de recherche du Québec - Nature et Technologies. Mechanical modeling expertise was contributed by co-author Professor Rama Bhat, Concordia University. The University of Montreal is officially known as Université de Montréal.

####

For more information, please click here

Contacts:
William Raillant-Clark

514-566-3813

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Imaging

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier July 16th, 2014

Lab-on-a-chip

EPFL Scientists use nanoscale IR spectroscopy to demonstrate α to β secondary structure transition associated with amyloid formation June 10th, 2014

Fully automated DNA lab-on-a-chip microfluidic system wins Dolomite’s Productizing Science® competition 2013 June 10th, 2014

One small chip -- one giant leap forward for early cancer detection: An ultra-sensitive nano-chip capable of detecting cancer at early stages May 19th, 2014

A Lab in Your Pocket May 7th, 2014

Discoveries

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Tools

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Food/Agriculture/Supplements

Key Announcements made at TAPPI International Nanotechnology Conference July 7th, 2014

Squid sucker ring teeth material could aid reconstructive surgery, serve as eco-packaging July 2nd, 2014

FDA issues guidance on use of nanotechnology in foods July 1st, 2014

Shaken, not stirred -- mythical god's capsules please! June 26th, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE