Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Secret of the Crystal's Corners: New Nanowire Structure Has Potential to Increase Semiconductor Applications: University of Cincinnati research describes discovery of a new structure that is a fundamental game changer in the physics of semiconductor nanowires

These cross-sectional electron microscope images show a quantum well tube nanowire’s hexagonal facets and crystal quality (left), and electron concentration in its corners.
These cross-sectional electron microscope images show a quantum well tube nanowire’s hexagonal facets and crystal quality (left), and electron concentration in its corners.

Abstract:
There's big news in the world of tiny things.

New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair - a semiconductor nanowire.

Secret of the Crystal's Corners: New Nanowire Structure Has Potential to Increase Semiconductor Applications: University of Cincinnati research describes discovery of a new structure that is a fundamental game changer in the physics of semiconductor nanowires

Cincinnati, OH | Posted on April 23rd, 2013

UC's Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues from across the US and around the world recently have published the research paper "Optical, Structural and Numerical Investigations of GaAs/AlGaAs Core-Multishell Nanowire Quantum Well Tubes" in Nano Letters, a premier journal on nanoscience and nanotechnology published by the American Chemical Society. In the paper, the team reports that they've discovered a new structure in a semiconductor nanowire with unique properties.

"This kind of structure in the gallium arsenide/aluminum gallium arsenide system had not been achieved before," Jackson says. "It's new in terms of where you find the electrons and holes, and spatially it's a new structure."

EYES ON SIZE AND CORNERING ELECTRONS

These little structures could have a big effect on a variety of technologies. Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They're made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties. Many semiconductors are made of silicon, but in this case they are made of gallium arsenide. And while widespread use of these thin nanowires in new devices might still be around the corner, the key to making that outcome a reality in the coming years is what's in the corner.

By using a thin shell called a quantum well tube and growing it - to about 4 nanometers thick - around the nanowire core, the researchers found electrons within the nanowire were distributed in an unusual way in relation to the facets of the hexagonal tube. A close look at the corners of the tube's facets revealed something unexpected - a high concentration of ground state electrons and holes.

"Having the faceting really matters. It changes the ballgame," Jackson says. "Adjusting the quantum well tube width allows you to control the energy - which would have been expected - but in addition we have found that there's a highly localized ground state at the corners which then can give rise to true quantum nanowires."

The nanowires the team uses for its research are grown at the Australian National University in Canberra, Australia - one partner in this project that extends to disparate parts of the globe.

AFFECTING THE SCIENCE OF SMALL IN A BIG WAY

The team's discovery opens a new door to further study of the fundamental physics of semiconductor nanowires. As for leading to advances in technology such as photovoltaic cells, Jackson says it's too soon to tell because quantum nanowires are just now being explored. But in a world where hundreds of dollars' worth of technology is packed into a 5-by-2.5 inch iPhone, it's not hard to see how small but powerful science comes at a premium.

The team at UC is one of only about a half dozen in the US conducting competitive research in the field. It's a relatively young discipline, too, Jackson says, and one that's moving fast. For such innovative science, he says it's important to have a collaborative effort. The team includes scientists from research centers in the Midwest, the West Coast and all the way Down Under: UC, Miami University of Ohio and Sandia National Laboratories in California here in the US; and Monash University and the Australian National University in Australia.

The team's efforts are another example of how UC not only stands out as a leader in top-notch science, but also in shaping the future of the discipline by providing its students with high-quality educational and research opportunities.

"We're training students in state-of-the-art techniques on state-of-the-art materials doing state-of-the-art physics," Jackson says. "Upon completing their education here, they're positioned to go out and make contributions of their own."

Additional contributors to the paper are Jan Yarrison-Rice of Miami University, Oxford, Ohio; Bryan Wong of Sandia National Laboratories, Livermore, Calif.; Changlin Zheng, Peter Miller and Joanne Etheridge of Monash University, Victoria, Australia; and Qiang Gao, Shriniwas Deshpande, Hark Hoe Tan and Chennupati Jagadish of the Australian National University, Canberra, Australia.

####

For more information, please click here

Contacts:
Tom Robinette
Phone: (513) 556-1825

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Chip Technology

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Nanoelectronics

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Discoveries

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Homeland Security

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Research partnerships

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Lonely atoms, happily reunited July 29th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Quantum nanoscience

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A new spin on reality July 15th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Quantum technologies to revolutionize 21st century: Nobel Laureates to discuss impacts at 66th Lindau Meeting July 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic