Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Secret of the Crystal's Corners: New Nanowire Structure Has Potential to Increase Semiconductor Applications: University of Cincinnati research describes discovery of a new structure that is a fundamental game changer in the physics of semiconductor nanowires

These cross-sectional electron microscope images show a quantum well tube nanowire’s hexagonal facets and crystal quality (left), and electron concentration in its corners.
These cross-sectional electron microscope images show a quantum well tube nanowire’s hexagonal facets and crystal quality (left), and electron concentration in its corners.

Abstract:
There's big news in the world of tiny things.

New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair - a semiconductor nanowire.

Secret of the Crystal's Corners: New Nanowire Structure Has Potential to Increase Semiconductor Applications: University of Cincinnati research describes discovery of a new structure that is a fundamental game changer in the physics of semiconductor nanowires

Cincinnati, OH | Posted on April 23rd, 2013

UC's Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues from across the US and around the world recently have published the research paper "Optical, Structural and Numerical Investigations of GaAs/AlGaAs Core-Multishell Nanowire Quantum Well Tubes" in Nano Letters, a premier journal on nanoscience and nanotechnology published by the American Chemical Society. In the paper, the team reports that they've discovered a new structure in a semiconductor nanowire with unique properties.

"This kind of structure in the gallium arsenide/aluminum gallium arsenide system had not been achieved before," Jackson says. "It's new in terms of where you find the electrons and holes, and spatially it's a new structure."

EYES ON SIZE AND CORNERING ELECTRONS

These little structures could have a big effect on a variety of technologies. Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They're made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties. Many semiconductors are made of silicon, but in this case they are made of gallium arsenide. And while widespread use of these thin nanowires in new devices might still be around the corner, the key to making that outcome a reality in the coming years is what's in the corner.

By using a thin shell called a quantum well tube and growing it - to about 4 nanometers thick - around the nanowire core, the researchers found electrons within the nanowire were distributed in an unusual way in relation to the facets of the hexagonal tube. A close look at the corners of the tube's facets revealed something unexpected - a high concentration of ground state electrons and holes.

"Having the faceting really matters. It changes the ballgame," Jackson says. "Adjusting the quantum well tube width allows you to control the energy - which would have been expected - but in addition we have found that there's a highly localized ground state at the corners which then can give rise to true quantum nanowires."

The nanowires the team uses for its research are grown at the Australian National University in Canberra, Australia - one partner in this project that extends to disparate parts of the globe.

AFFECTING THE SCIENCE OF SMALL IN A BIG WAY

The team's discovery opens a new door to further study of the fundamental physics of semiconductor nanowires. As for leading to advances in technology such as photovoltaic cells, Jackson says it's too soon to tell because quantum nanowires are just now being explored. But in a world where hundreds of dollars' worth of technology is packed into a 5-by-2.5 inch iPhone, it's not hard to see how small but powerful science comes at a premium.

The team at UC is one of only about a half dozen in the US conducting competitive research in the field. It's a relatively young discipline, too, Jackson says, and one that's moving fast. For such innovative science, he says it's important to have a collaborative effort. The team includes scientists from research centers in the Midwest, the West Coast and all the way Down Under: UC, Miami University of Ohio and Sandia National Laboratories in California here in the US; and Monash University and the Australian National University in Australia.

The team's efforts are another example of how UC not only stands out as a leader in top-notch science, but also in shaping the future of the discipline by providing its students with high-quality educational and research opportunities.

"We're training students in state-of-the-art techniques on state-of-the-art materials doing state-of-the-art physics," Jackson says. "Upon completing their education here, they're positioned to go out and make contributions of their own."

Additional contributors to the paper are Jan Yarrison-Rice of Miami University, Oxford, Ohio; Bryan Wong of Sandia National Laboratories, Livermore, Calif.; Changlin Zheng, Peter Miller and Joanne Etheridge of Monash University, Victoria, Australia; and Qiang Gao, Shriniwas Deshpande, Hark Hoe Tan and Chennupati Jagadish of the Australian National University, Canberra, Australia.

####

For more information, please click here

Contacts:
Tom Robinette
Phone: (513) 556-1825

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Chip Technology

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Sensors

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Nanoelectronics

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Discoveries

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Ceramics don't have to be brittle: Caltech materials scientists are creating materials by design September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Announcements

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

New pricing report for bulk graphene materials September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Homeland Security

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Energy

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Breakthrough for Carbon Nanotube Solar Cells: Polychiral carbon nanotube mixture absorbs more sunlight September 3rd, 2014

Research partnerships

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Solar/Photovoltaic

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Breakthrough for Carbon Nanotube Solar Cells: Polychiral carbon nanotube mixture absorbs more sunlight September 3rd, 2014

Quantum nanoscience

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE