Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-infused paint can detect strain: Rice University's fluorescent nanotube coating can reveal stress on planes, bridges, buildings

An illustration shows how polarized light from a laser and a near-infrared spectrometer could read levels of strain in a material coated with nanotube-infused paint invented at Rice University. (Credit: Bruce Weisman/Rice University)
An illustration shows how polarized light from a laser and a near-infrared spectrometer could read levels of strain in a material coated with nanotube-infused paint invented at Rice University.

(Credit: Bruce Weisman/Rice University)

Abstract:
A new type of paint made with carbon nanotubes at Rice University can help detect strain in buildings, bridges and airplanes.

Nano-infused paint can detect strain: Rice University's fluorescent nanotube coating can reveal stress on planes, bridges, buildings

Houston, TX | Posted on June 21st, 2012

The Rice scientists call their mixture "strain paint" and are hopeful it can help detect deformations in structures like airplane wings. Their study, published online this month by the American Chemical Society journal Nano Letters details a composite coating they invented that could be read by a handheld infrared spectrometer.



This method could tell where a material is showing signs of deformation well before the effects become visible to the naked eye, and without touching the structure. The researchers said this provides a big advantage over conventional strain gauges, which must be physically connected to their read-out devices. In addition, the nanotube-based system could measure strain at any location and along any direction.



Rice chemistry professor Bruce Weisman led the discovery and interpretation of near-infrared fluorescence from semiconducting carbon nanotubes in 2002, and he has since developed and used novel optical instrumentation to explore nanotubes' physical and chemical properties.



Satish Nagarajaiah, a Rice professor of civil and environmental engineering and of mechanical engineering and materials science, and his collaborators led the 2004 development of strain sensing for structural integrity monitoring at the macro level using the electrical properties of carbon nanofilms - dense networks/ensembles of nanotubes. Since then he has continued to investigate novel strain sensing methods using various nanomaterials.



But it was a stroke of luck that Weisman and Nagarajaiah attended the same NASA workshop in 2010. There, Weisman gave a talk on nanotube fluorescence. As a flight of fancy, he said, he included an illustration of a hypothetical system that would use lasers to reveal strains in the nano-coated wing of a space shuttle.



"I went up to him afterward and said, 'Bruce, do you know we can actually try to see if this works?'" recalled Nagarajaiah.



Nanotube fluorescence shows large, predictable wavelength shifts when the tubes are deformed by tension or compression. The paint -- and therefore each nanotube, about 50,000 times thinner than a human hair -- would suffer the same strain as the surface it's painted on and give a clear picture of what's happening underneath.



"For an airplane, technicians typically apply conventional strain gauges at specific locations on the wing and subject it to force vibration testing to see how it behaves," Nagarajaiah said. "They can only do this on the ground and can only measure part of a wing in specific directions and locations where the strain gauges are wired. But with our non-contact technique, they could aim the laser at any point on the wing and get a strain map along any direction."



He said strain paint could be designed with multifunctional properties for specific applications. "It can also have other benefits," Nagarajaiah said. "It can be a protective film that impedes corrosion or could enhance the strength of the underlying material."



Weisman said the project will require further development of the coating before such a product can go to market. "We'll need to optimize details of its composition and preparation, and find the best way to apply it to the surfaces that will be monitored," he said. "These fabrication/engineering issues should be addressed to ensure proper performance, even before we start working on portable read-out instruments."



"There are also subtleties about how interactions among the nanotubes, the polymeric host and the substrate affect the reproducibility and long-term stability of the spectral shifts. For real-world measurements, these are important considerations," Weisman said.



But none of those problems seem insurmountable, he said, and construction of a handheld optical strain reader should be relatively straightforward. "There are already quite compact infrared spectrometers that could be battery-operated," Weisman said. "Miniature lasers and optics are also readily available. So it wouldn't require the invention of new technologies, just combining components that already exist.



"I'm confident that if there were a market, the readout equipment could be miniaturized and packaged. It's not science fiction."



Lead author of the paper is Paul Withey, an associate professor of physics at the University of Houston - Clear Lake, who spent a sabbatical in Weisman's lab at Rice studying the fluorescence of nanotubes in polymers. Co-authors are Rice civil engineering graduate student Venkata Srivishnu Vemuru in Nagarajaiah's group and Sergei Bachilo, a research scientist in Weisman's group.



Support for the research came from the National Science Foundation, the Welch Foundation, the Air Force Research Laboratory and the Infrastructure-Center for Advanced Materials at Rice.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Richard E. Smalley Institute for Nanoscale Science and Technology:

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Videos/Movies

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Tantalizing discovery may boost memory technology: Rice University scientists make tantalum oxide practical for high-density devices August 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Materials/Metamaterials

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Military

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

Photonics/Optics/Lasers

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

Construction

Smarter window materials can control light and energy July 22nd, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

Research findings point way to designing crack-resistant metals June 24th, 2015

Solar cells in the roof and nanotechnology in the walls June 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic