Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > First direct observation of oriented attachment in nanocrystal growth: Study at Berkeley Lab points the way to synthesizing new biomimetic materials and improved bioremediation

Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals.

Credit: Image courtesy of Jim DeYorero
Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals.

Credit: Image courtesy of Jim DeYorero

Abstract:
Through biomineralization, nature is able to produce such engineering marvels as mother of pearl, or nacre, the inner lining of abalone shells renowned for both its iridescent beauty and amazing toughness. Key to biomineralization is the phenomenon known as "oriented attachment," whereby adjacent nanoparticles connect with one another in a common crystallographic orientation. While the importance of oriented attachment to biomineral properties long has been recognized, the mechanism by which it occurs has remained a mystery. With a better understanding of oriented attachment it should be possible to synthesize new materials with remarkable structural properties. To that end, a team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first direct observation of what they have termed "jump-to-contact," the critical step in oriented attachment.

First direct observation of oriented attachment in nanocrystal growth: Study at Berkeley Lab points the way to synthesizing new biomimetic materials and improved bioremediation

Berkeley, CA | Posted on May 24th, 2012

"The direct observation of the translational and rotational accelerations associated with the jump-to-contact between nanoparticles enabled us to calculate the forces that drive oriented attachment," said Jim DeYoreo, a scientist with the Molecular Foundry, a DOE nanoscience center at Berkeley Lab where this research took place. "This gives us a basis for testing models and simulations that could open the door to using oriented attachment in the synthesis of unique new materials."

DeYoreo is the corresponding author of a paper in the journal Science that describes this research titled "Direction-specific interactions control crystal growth by oriented attachment." Co-authoring this paper were Dongsheng Li, Michael Nielsen, Jonathan Lee, Cathrine Frandsen and Jillian Banfield.

Ever since a study in 2000 led by co-author Banfield revealed the existence of nanoparticle oriented attachment, it has become widely recognized that the phenomenon is an important mechanism of crystal growth in many natural and biomimetic materials, as well as in the synthesis of nanowires.

"Such nanocrystal systems often exhibit complex forms ranging from quasi-one dimensional chains to three-dimensional hierarchical superstructures, but typically diffract as a single crystal, implying that the primary particles underwent alignment during growth," says Li, first author of the Science paper and member of DeYoreo's research group. "When particle alignment is accompanied by coalescence, this growth is characterized as oriented attachment, however, the pathway by which nanoparticles become aligned and attached has been poorly understood."

To learn more about the interactions and forces that drive oriented attachment, the Berkeley researchers studied the early crystal growth of iron oxide nanoparticles. Iron oxides are abundant in Earth's crust and play an important role in the biogeochemical processes that shape near-surface environments. Using a silicon liquid cell mounted within a high-resolution transmission electron microscope at the Molecular Foundry, the research team recorded images with sufficient resolution to track nanoparticle orientations throughout the growth of the crystals.

"We observed the particles undergoing continuous rotation and interaction until they found a perfect lattice match at which point a sudden jump-to-contact occurred over a distance of less than one nanometer," DeYoreo says. "This jump-to-contact is followed by lateral atom-by-atom additions initiated at the contact point. The measured translational and rotational accelerations show that strong, highly-direction-specific interactions drive crystal growth via oriented attachment."

The information gained from this investigation into the oriented attachment of iron oxide nanoparticles should be applicable not only to the future synthesis of biomimetic materials, but also to environmental restoration efforts. Scientists now know that mineralization in natural environments often proceeds through particle-particle attachment events and plays an important part in the sequestration of contaminants. Understanding the forces behind oriented attachment should also advance the development of branched or tree-like semiconductor nanowires, structures in which one or more secondary nanowires grow radially from a primary nanowire.

"Branched semiconductor nanowires are being pursued for applications in photocatalysis, photovoltaics and nanoelectronics because of their large surface areas, small diameters, and ability to form natural junctions," DeYoreo says. "An understanding of the underlying mechanisms that control nanowire branching should help materials scientists develop more effective strategies for producing these materials."

This research was primarily supported by the DOE Office of Science.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Imaging

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Laboratories

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Nanoelectronics

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Materials/Metamaterials

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Tools

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Energy

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

FEI and Weatherford Enter Into Joint Agreement for Advanced Reservoir Characterization Services May 18th, 2015

Nanobiotechnology

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Studying dynamics of ion channels May 18th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project