Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA Engineering receives $6M to construct new state-of-the-art building

Abstract:
The U.S. Commerce Department's National Institute of Standards and Technology (NIST) has awarded UCLA's Henry Samueli School of Engineering and Applied Science $6 million to support the construction of the new state-of-the-art Western Institute of Nanotechnology on Green Engineering and Metrology (WIN-GEM).

UCLA Engineering receives $6M to construct new state-of-the-art building

Los Angeles, CA | Posted on October 6th, 2010

The new building will provide core research facilities that will serve UCLA Engineering's "centers of excellence" dedicated to advancing energy conservation technologies for microelectronics and nanotechnology.

WIN-GEM will include 35,000 square feet of laboratory space on four levels to support research on low-power, nonvolatile nanoelectronics; green manufacturing of novel nanomaterial-based energy technologies; and new materials for energy generation, storage and management. The roof of the building will include a solar-cell array for energy supply and power-management experimentation.

"We are grateful to NIST for the opportunity to be able to work on such a groundbreaking project as WIN-GEM," said Vijay K. Dhir, dean of UCLA Engineering. "The world-class facility will allow our faculty to continue their innovative research in areas that will advance essential energy conservation technologies."

The Western Institute of Nanoelectronics, one of the centers of excellence to be housed in WIN-GEM, is a consortium of major semiconductor companies in the U.S. and will partner with NIST to address the needs of electronics beyond today's mainstream CMOS (complementary metal-oxide semiconductor) technology.

Currently, the institute focuses on alternate spintronics technology, with an objective of achieving non-volatile electronics by the year 2020 in order to resolve the critical challenges of reducing power dissipation — for next-generation microelectronics, as well as green information technology.

The Western Institute of Electronics and the Center on Functional Engineered Nano Architectonics (FENA) — another center of excellence, which explores low-cost, high-yield, energy-efficient nanoscale manufacturing technologies for semiconductor devices — have more than 80 principal investigators in the U.S. in addition to those at UCLA. FENA will also be located in WIN-GEM.

"It gives us great excitement and pleasure to learn that NIST is funding our new WIN-GEM building," said WIN-GEM's principal investigator, Kang L. Wang, a professor of electrical engineering and director of both the Western Institute of Electronics and FENA. "We are thrilled to be a part of this construction plan, and the support will further strengthen our continued collaboration with NIST. WIN-GEM will allow UCLA to consolidate and upgrade several other centers' facilities and equipment that are now spread out across multiple sites at the university."

The new building will house the most advanced metrology and characterization equipment and will help accelerate research on nanoelectronics and spintronics, as well as green energy programs like those being addressed by WIN-GEM's third center, the Energy Frontier Research Center on Molecularly Engineered Energy Materials, which is funded by the U.S. Department of Energy.

"This award is extremely timely, given the current state budget constraints," said Jane P. Chang, associate dean of research and physical resources at UCLA Engineering and co-principal investigator of the project. "State-of-the-art infrastructure is greatly needed to support the innovative and critical work of our faculty. Furthermore, the green engineering and manufacturing aspects of the project are in line with both the direction of the city of Los Angeles and state of California and promise a greater impact when construction is completed."

The NIST award was funded under the NIST Construction Grant Program. This project was chosen on the basis of scientific and technical merit, the need for federal funding, design quality and sustainability for the intended purpose, and the strength of the project-management plan.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Wileen Wong Kromhout

310-206-0540

Matthew Chin

310-206-0680

Copyright © UCLA Henry Samueli School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

SUNY Poly Partnership with Japan's New Energy and Industrial Development Organization Drives Investment in and Installation of Emerging ‘Green’ Technologies at World-Class 'Zero Energy Nano' Building March 22nd, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Materials/Metamaterials

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic