Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems

Professors Karl Hirschman, Stefan Preble and Seth Hubbard work in the SMFL developing and fabricating integrated circuits.  Credit: Elizabeth Lamark/RIT
Professors Karl Hirschman, Stefan Preble and Seth Hubbard work in the SMFL developing and fabricating integrated circuits. Credit: Elizabeth Lamark/RIT

Abstract:
Rochester Institute of Technology is upgrading its Semiconductor and Microsystems Fabrication Laboratory (SMFL) to further advance the university’s research in integrated photonics, quantum information technology, biomedical devices and sensors for smart systems. Improvements will enable the university to expand its key research, teaching, workforce training and entrepreneurial capabilities.

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems

Rochester, NY | Posted on August 16th, 2019

The 2019-20 renovation project will be launched with a $1 million grant from New York state’s Higher Education Capital Matching Grant Program. This first phase of expansion, expected to begin in the 2019-20 academic year, is one part of a broader project to create a versatile, multidisciplinary user facility to meet the evolving needs of academic and industry researchers in the Rochester region and across the state, said Doreen Edwards, dean of RIT’s Kate Gleason College of Engineering.

“I am very grateful that the state of New York recognizes the importance of research and higher education on the state’s economy,” said Edwards. “Thanks to this grant, we will be able to upgrade and expand our cleanroom, making it more relevant to emerging technologies. The facility will provide our faculty and students with opportunities to work side-by-side with our industry partners who are developing new products right here in Rochester.”

New York State Gov. Andrew M. Cuomo announced recently that RIT was one of three local colleges receiving a portion of $2.3 million in matching capital improvement grants. All funding is part of the state’s emphasis on continual improvements to college and university facilities.

“These investments in our college campuses will not only benefit our next generation of leaders, they will also strengthen our communities and provide an economic boost to the entire state,” Cuomo said in a statement.

The 2019-20 funding will enable RIT to:

Expand its research portfolio in key areas related to integrated photonics, quantum information technology, biomedical materials and devices, and sensors for smart (interconnected) systems
Expand and improve user services available to researchers and inventors in the region
Assist with the incubation of companies who need access to micro- and nano-fabrication facilities
Improve the quality of hands-on education in micro- and nano-fabrication technologies at the bachelor’s, master’s and doctoral level
Deliver an expanded portfolio of workforce training and talent development models to meet the needs of regional and other New York companies in the industry
Incubate new companies and inventors
“This is for much-needed infrastructure upgrades,” said Karl Hirschman, director of the SMFL and a professor in RIT’s electrical and microelectronic engineering department. “This will support expansion of research initiatives within microsystems as well as the growing area of biomedical engineering and their need for microscale capabilities in fabrication and nano-materials. This expansion will improve upon and complement recent investments made through AIM Photonics.”

Wearing special attire, the researchers in the SMFL, also referred to as a clean room, process complex integrated circuits used to power electronic devices from smart phones to smart cars and homes. What sets RIT’s clean room apart is its fabrication capabilities made possible through equipment rarely found in university settings, and the university’s experienced faculty-researchers with the skills to use, teach and further develop the technologies needed today to expand the electronics field.

Originally built in 1985 as part of RIT’s microelectronic engineering program, the lab has expanded considerably and is used by the engineering college’s undergraduate, graduate and doctoral programs, by faculty-researchers associated with the Nanopower Labs and Future Photon Initiative as well as industrial partners. With more than 10,000 square feet of clean room space, the SMFL is equipped with micro-fabrication and metrology equipment to support research programs in semiconductor materials and devices, nano-electronics, MEMS devices and sensors, photonic devices and nanomaterials. All these systems are utilized as part of RIT’s role in AIM Photonics, to advance integrated photonics, technology essential to the nation’s manufacturing capabilities in such areas as high-speed data and telecommunications.

Overall, RIT has increased its capabilities with this equipment, and has positioned itself as a leader in semiconductor tech and research. In 2016, the engineering laboratory received a high-tech laser lithography system and a reactive ion etching system through two National Science Foundation major research instrumentation program grants. The laser lithography system is a multi-step, precision process to build, layer-upon-layer, the electronic circuitry on silicon wafers that is then used as the basis for electronic devices. The new system has several advantages over traditional proximity or projection optical lithography, Hirschman explained. The system has the ability to handle a variety of substrate shapes and sizes, make on-demand pattern changes, and implement pattern variations within a sample. Patterning can be intermixed with e-beam or optical exposure levels, providing design flexibility on pattern transfer processes.

A plasma reactive ion etching system was acquired to test and develop new materials that could complement the use of silicon for devices and improved applications related to solar energy and ultraviolet wavelength sensors. Plasma reactive-ion etching systems incorporate several steps throughout the integrated circuit fabrication process. Reactive plasma on the wafer surface, removes and refines excess material to “etch” or form patterns into the layers of the integrated circuit.

These technologies, along with the MOVPE—a metal organic vapor phase epitaxy system—used for the growth of novel materials, thin film crystals and nanostructures, give RIT researchers more flexibility and independence in its development and processing of integrated circuits.

####

About Rochester Institute of Technology
Rochester Institute of Technology is home to leading creators, entrepreneurs, innovators and researchers. Founded in 1829, RIT enrolls about 19,000 students in more than 200 career-oriented and professional programs, making it among the largest private universities in the U.S.

The university is internationally recognized and ranked for academic leadership in business, computing, engineering, imaging science, liberal arts, sustainability, and fine and applied arts. RIT also offers unparalleled support services for deaf and hard-of-hearing students. The cooperative education program is one of the oldest and largest in the nation. Global partnerships include campuses in China, Croatia, Dubai and Kosovo.

For more information, please click here

Contacts:
Michelle Cometa
585-475-4954

Twitter: @MichelleCometa

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Nanofabrication

Machine learning peeks into nano-aquariums August 31st, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C February 28th, 2020

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Openings/New facilities/Groundbreaking/Expansion

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production November 26th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Iranian Firm Offering Nano-Products on Chinese Market October 16th, 2018

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Academic/Education

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Nanomedicine

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Quantum Computing

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn't obey the rules September 11th, 2020

Oxford Instruments partners with the Ł10 million consortium, to launch the first commercial quantum computer in UK September 2nd, 2020

UCLA computer scientists set benchmarks to optimize quantum computer performance August 14th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Optical computing/Photonic computing

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Painting With Light: Novel Nanopillars Precisely Control the Color and Intensity of Transmitted Light September 4th, 2020

Ambient light alters refraction in 2D material: Rice researchers find effect that could aid 3D displays, virtual reality, self-driving vehicles September 2nd, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Photonics/Optics/Lasers

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project