Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems

Professors Karl Hirschman, Stefan Preble and Seth Hubbard work in the SMFL developing and fabricating integrated circuits.  Credit: Elizabeth Lamark/RIT
Professors Karl Hirschman, Stefan Preble and Seth Hubbard work in the SMFL developing and fabricating integrated circuits. Credit: Elizabeth Lamark/RIT

Abstract:
Rochester Institute of Technology is upgrading its Semiconductor and Microsystems Fabrication Laboratory (SMFL) to further advance the university’s research in integrated photonics, quantum information technology, biomedical devices and sensors for smart systems. Improvements will enable the university to expand its key research, teaching, workforce training and entrepreneurial capabilities.

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems

Rochester, NY | Posted on August 16th, 2019

The 2019-20 renovation project will be launched with a $1 million grant from New York state’s Higher Education Capital Matching Grant Program. This first phase of expansion, expected to begin in the 2019-20 academic year, is one part of a broader project to create a versatile, multidisciplinary user facility to meet the evolving needs of academic and industry researchers in the Rochester region and across the state, said Doreen Edwards, dean of RIT’s Kate Gleason College of Engineering.

“I am very grateful that the state of New York recognizes the importance of research and higher education on the state’s economy,” said Edwards. “Thanks to this grant, we will be able to upgrade and expand our cleanroom, making it more relevant to emerging technologies. The facility will provide our faculty and students with opportunities to work side-by-side with our industry partners who are developing new products right here in Rochester.”

New York State Gov. Andrew M. Cuomo announced recently that RIT was one of three local colleges receiving a portion of $2.3 million in matching capital improvement grants. All funding is part of the state’s emphasis on continual improvements to college and university facilities.

“These investments in our college campuses will not only benefit our next generation of leaders, they will also strengthen our communities and provide an economic boost to the entire state,” Cuomo said in a statement.

The 2019-20 funding will enable RIT to:

Expand its research portfolio in key areas related to integrated photonics, quantum information technology, biomedical materials and devices, and sensors for smart (interconnected) systems
Expand and improve user services available to researchers and inventors in the region
Assist with the incubation of companies who need access to micro- and nano-fabrication facilities
Improve the quality of hands-on education in micro- and nano-fabrication technologies at the bachelor’s, master’s and doctoral level
Deliver an expanded portfolio of workforce training and talent development models to meet the needs of regional and other New York companies in the industry
Incubate new companies and inventors
“This is for much-needed infrastructure upgrades,” said Karl Hirschman, director of the SMFL and a professor in RIT’s electrical and microelectronic engineering department. “This will support expansion of research initiatives within microsystems as well as the growing area of biomedical engineering and their need for microscale capabilities in fabrication and nano-materials. This expansion will improve upon and complement recent investments made through AIM Photonics.”

Wearing special attire, the researchers in the SMFL, also referred to as a clean room, process complex integrated circuits used to power electronic devices from smart phones to smart cars and homes. What sets RIT’s clean room apart is its fabrication capabilities made possible through equipment rarely found in university settings, and the university’s experienced faculty-researchers with the skills to use, teach and further develop the technologies needed today to expand the electronics field.

Originally built in 1985 as part of RIT’s microelectronic engineering program, the lab has expanded considerably and is used by the engineering college’s undergraduate, graduate and doctoral programs, by faculty-researchers associated with the Nanopower Labs and Future Photon Initiative as well as industrial partners. With more than 10,000 square feet of clean room space, the SMFL is equipped with micro-fabrication and metrology equipment to support research programs in semiconductor materials and devices, nano-electronics, MEMS devices and sensors, photonic devices and nanomaterials. All these systems are utilized as part of RIT’s role in AIM Photonics, to advance integrated photonics, technology essential to the nation’s manufacturing capabilities in such areas as high-speed data and telecommunications.

Overall, RIT has increased its capabilities with this equipment, and has positioned itself as a leader in semiconductor tech and research. In 2016, the engineering laboratory received a high-tech laser lithography system and a reactive ion etching system through two National Science Foundation major research instrumentation program grants. The laser lithography system is a multi-step, precision process to build, layer-upon-layer, the electronic circuitry on silicon wafers that is then used as the basis for electronic devices. The new system has several advantages over traditional proximity or projection optical lithography, Hirschman explained. The system has the ability to handle a variety of substrate shapes and sizes, make on-demand pattern changes, and implement pattern variations within a sample. Patterning can be intermixed with e-beam or optical exposure levels, providing design flexibility on pattern transfer processes.

A plasma reactive ion etching system was acquired to test and develop new materials that could complement the use of silicon for devices and improved applications related to solar energy and ultraviolet wavelength sensors. Plasma reactive-ion etching systems incorporate several steps throughout the integrated circuit fabrication process. Reactive plasma on the wafer surface, removes and refines excess material to “etch” or form patterns into the layers of the integrated circuit.

These technologies, along with the MOVPE—a metal organic vapor phase epitaxy system—used for the growth of novel materials, thin film crystals and nanostructures, give RIT researchers more flexibility and independence in its development and processing of integrated circuits.

####

About Rochester Institute of Technology
Rochester Institute of Technology is home to leading creators, entrepreneurs, innovators and researchers. Founded in 1829, RIT enrolls about 19,000 students in more than 200 career-oriented and professional programs, making it among the largest private universities in the U.S.

The university is internationally recognized and ranked for academic leadership in business, computing, engineering, imaging science, liberal arts, sustainability, and fine and applied arts. RIT also offers unparalleled support services for deaf and hard-of-hearing students. The cooperative education program is one of the oldest and largest in the nation. Global partnerships include campuses in China, Croatia, Dubai and Kosovo.

For more information, please click here

Contacts:
Michelle Cometa
585-475-4954

Twitter: @MichelleCometa

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Nanofabrication

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Academic/Education

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Nanomedicine

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Quantum Computing

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Optical computing/Photonic computing

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Photonics/Optics/Lasers

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project