Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotubes with improved dispersibility

Abstract:
New product grade: Baytubes® C 70 P

Carbon nanotubes with improved dispersibility

Leverkusen | Posted on February 17th, 2010

Bayer MaterialScience is introducing a new grade of carbon nanotubes (CNTs) at the Nanotech trade show in Tokyo from February 17 to 19. Compared with the existing product Baytubes® C 150 P, the CNTs with the trade name Baytubes® C 70 P are characterized by improved dispersibility, making them highly suited to use in mechanically sensitive polymers. Furthermore, economic advantages can result from the shorter times required to disperse the nanotube agglomerates in water and other low-viscosity liquids.

"This new trial product is our response to inquiries from our customers, who are looking for better dispersibility from the Baytubes® agglomerates. The new product is more easily incorporated than Baytubes® C 150 P, as reflected by its greatly reduced bulk density of just 45 to 95 kilograms per cubic meter. Therefore, Baytubes® C 70 P are ideal for direct incorporation in mechanically sensitive thermoplastics," explains Dr. Heiko Hocke, a carbon nanotubes specialist at Bayer MaterialScience. "With regard to their other properties, the two Baytubes® grades are virtually the same." Multi-wall carbon nanotubes, with their very large length-to-diameter ratio, display very high tensile strength and exceptional electrical and thermal conductivity.

Baytubes® are agglomerated CNTs and offer a very high degree of purity. The agglomerates can be easily and safely handled and efficiently processed. Even small amounts are capable of imparting new properties to dispersions, plastics, metals and other materials. The potential fields of application for these modified materials range from sporting goods to the electronics industry and mechanical engineering.

Bayer MaterialScience is one of the few companies worldwide capable of manufacturing carbon nanotubes with a high degree of purity and a consistent level of quality on an industrial scale, thanks to an innovative processing method developed in-house. Only recently, a new pilot plant for CNTs with an annual capacity of 200 tons has been inaugurated in Leverkusen.

####

About Bayer MaterialScience
With 2008 sales of EUR 9.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2008, Bayer MaterialScience had 30 production sites and employed approximately 15,100 people around the globe. Bayer MaterialScience is a Bayer Group company.

For more information, visit www.bayermaterialscience.com and www.baytubes.com

For more information, please click here

Contacts:
Dr. Frank Rothbarth
External Communications / Trade press
Address: Bayer MaterialScience AG
Building: K 12
Germany-51368 Leverkusen
Telephone: + 49 214 30-25363
Telefax: + 49 214 30-66426

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Sports

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

New composite material as CO2 sensor June 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic