Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Functional Printing Enables Next Wave of Mass Produced Electronic

Advanced ink-jet printing machine for the production of organic electronics. (Source: FUJIFILM Dimatix)
Advanced ink-jet printing machine for the production of organic electronics. (Source: FUJIFILM Dimatix)

Abstract:
LOPE-C - Functional Printing - May 31 to June 2, 2010 - Frankfurt, Germany

Functional Printing Enables Next Wave of Mass Produced Electronic

Frankfurt, Germany | Posted on January 20th, 2010

Large-area, organic and printed electronics - complementing traditional silicon-based microelectronics - is at the threshold of mass production, promising a host of thin and lightweight, flexible and robust products. They are manufactured at very low cost by extending well established graphic printing techniques - layering very thin stacks of electronic components, semiconductors, insulators and barriers on polyester substrates. Functional printing enables a multitude of novel applications such as organic solar cells, OLED displays and wall-sized OLED lighting, e-readers, flat batteries, RFID tags, sensors and actuators for ambient intelligence in textiles and smart packaging, even low-cost electronic gadgets suited for one-time use - easily integrated in our familiar living surroundings.

LOPE-C 2010 (Large-area, Organic and Printed Electronics Convention), the annual conference and exhibition of the OE-A, held May 31 to June 2, 2010, at the Congress Center, Messe Frankfurt, Germany, will demonstrate the latest process technologies and applications to a worldwide audience of technologists, investors and end-users.

Low Cost Electronics: Printed Roll to Roll

Functional printing of mass-produced organic electronics is based on various rapidly evolving processes: flexographic printing, a subset of relief printing, transfers the ink from a printing form to plastic substrates. A variation of flexo is gravure printing, in which the printing pattern is defined by very small cups engraved in a printing cylinder. Gravure is a low-pressure technique enabling the use of organic dissolvent. Offset, a flat printing technique widely used for high-volume graphics and delivering excellent resolution at a very high throughput, is an additional option.

Screen printing is another high potential for mass producing organic electronics. Currently applied in PCB manufacturing, screen printing defines the printed pattern through an opaque mask applied to a fine mesh. By applying pressure the ink is forced onto the substrate in the non-masked areas. Rotary screen printing allows printing in thick layers, roll-to-roll. "Roll-to-roll printing opens up new opportunities for mass producing organic devices and systems," says Dr. Christian Maas of Werner Kammann Maschinenfabrik in Bünde, Germany. "High-end screen printing is a versatile basis for highly productive printing and coating applications." Among them, says Maas, are smooth and evenly spread electrodes for defibrillators, disposable glucose test strips, flexible batteries customizable for small portable products, antennas for RFID tags and automotive sealing devices.

A detailed overview of the various printing and patterning technologies as well as current and future applications is given in the "OE-A Roadmap for Organic and Printed Electronics" recently published by the Organic Electronics Association (OE-A).

Inkjet Printing for High Throughput Manufacturing

A strong contender for the printing of organic electronics is inkjet printing. Well known as a ubiquitous office appliance, inkjet uses very small droplets of ink, which are ejected onto the substrate through thermal or piezoelectric effects. Feature sizes of a few micrometers have been achieved. A very important, distinctive property of inkjet is that, due to its digital definition of the printed pattern, each subsequent impression can be different, allowing individual layouts and signatures.

"Inkjet has a bright future in the deposition of digital materials on organic substrates," says Martin Schoeppler, CEO and President of FUJIFILM Dimatix, Santa Clara, CA, USA. Using multiple printheads in parallel tremendously increases throughput - evolving inkjet to a high-quality mass printing technology. "The opportunities are unlimited," Mr. Schoeppler says, "ranging from polymer solar films, flexible polymer-based lighting elements, electronic books and paper-like electronic products to intelligent packaging featuring interactive displays and controls for consumer products."

Atmospheric and Vacuum Coating Processes

There is a host of other patterning techniques, such as laser ablation, vacuum deposition, soft lithography and large-area optical lithography, or solution coating techniques like slot-die, wire bar or curtain coating. Vacuum deposition processes show great potential for large-area roll-to-roll patterning and are pursued by Fraunhofer IPMS in Dresden, Germany. At its core is depositing functional layers for organic photovoltaics and OLED lighting devices on flexible substrates.

As an alternative, an atmospheric plasma-based powder coating technology for micro- and nanoparticle deposition has been developed by Reinhausen Plasma of Regensburg, Germany. "Plasmadust," as the process is called, works with materials such as Al, Cu, Zn and polymers, achieving high deposition rates at a low temperature load of the substrate. Among the applications are plasma and laser sintering, solar cell wafer metallization, and the manufacturing of thinfilm batteries and fuel cells.

Enabling Electronics Everywhere

Large-area, organic and printed electronics in its various production technologies is enabling vast opportunities for attractive consumer goods and intelligent packaging. Interactive periodicals, combining print and online content, are close to being introduced. Also on the agenda are medical applications, organic photovoltaics and lighting. The mid-term outlook for organic and printed electronics is evidenced in the current third edition of the official OE-A Roadmap White Paper. The latest progress in products and processes will be demonstrated hands-on at LOPE-C 2010.

####

About LOPE-C
LOPE-C (Large Area, Organic & Printed Electronics Convention) is the leading, fully industry-sponsored annual conferences and exhibition of organic and printed electronics. LOPE-C presents the economic trends and the scope of scientific achievements in the field. The convention focuses on the production and application of organic and printed electronics. LOPE-C 2010 is held May 31 to June 2, 2010 at the Congress Center of Messe Frankfurt, Germany. It is jointly organized by the Organic Electronics Association (OE-A) and Messe Frankfurt Ausstellungen GmbH.

About OE-A

Formed in 2004 as a Working Group within VDMA (German Engineering Federation), the OE-A (Organic Electronics Association) is the foremost professional body representing the worldwide organic and printed electronics industry. With more than 120 members throughout Europe, North America, Asia and Australia, OE-A represents the entire industrial value chain. The OE-A Roadmap, fixing time lines for applications and technologies, is now out in its third edition (2009). www.oe-a.org

About Messe Frankfurt Ausstellungen GmbH

Messe Frankfurt Ausstellungen GmbH is a fully owned subsidiary of Messe Frankfurt GmbH. At an annual turnover of €440m (2008), Messe Frankfurt is the world's largest fair company operating their own fair grounds. The globally active holding operates a worldwide network of 28 daughter companies, five branch offices and 52 international distribution partners and representatives. With this broad-based structure, Messe Frankfurt is present in more than 150 countries, with important industry events in more than 30 locations. In 2008, Messe Frankfurt organized a total of 102 fairs, 60 of which took place in foreign countries.

For more information, please click here

Contacts:
LOPE-C Press Contact:
For enquiries regarding LOPE-C 2010 conference topics and events, speaker interviews, etc. please
contact:

Werner Schulz
+49 (0) 30 81 05 89 59

Copyright © LOPE-C

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Kalam: versatility personified August 1st, 2015

Display technology/LEDs/SS Lighting/OLEDs

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Chip Technology

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Sensors

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Automotive/Transportation

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Textiles/Clothing

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Self-Cleaning Woolen Fabrics Produced in Iran July 21st, 2015

Nanomembranes Boost Efficiency in Wastewater Treatment July 12th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Stretching the limits on conducting wires July 25th, 2015

BESSTECH’s Innovative Battery Technology is Highlighted During Featured Presentations at SEMICON West 2015: CEO Fernando Gómez-Baquero delivers invited remarks at the event’s Silicon Innovation Forum and Semiconductor Technology Symposium July 16th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Events/Classes

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Solar/Photovoltaic

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project