Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists ‘photograph’ nano-particle self-assembly

Abstract:
Scientists at the University of Glasgow have imaged the self-assembly of nano-particles, unveiling the blueprint for building designer molecular machines atom-by-atom.

Scientists ‘photograph’ nano-particle self-assembly

Scotland | Posted on January 4th, 2010

Working out how nano-particles are built is key to developing new ‘intelligent materials', electronic devices, and understanding the bio-machinery that operates in living cells.

The ability to control this self-assembly has profound consequences for the development of new technologies as well as understanding the basis for complex chemistry, and for example, the origins of life.

In a study reported in the journal Science this week, researchers at Glasgow, along with colleagues at the University of Bielefeld, Germany, devised an experiment which enabled them to observe molecules being constructed around what appeared to be a transient template cluster.

The experiment involved the construction a flow reactor system for the assembly of the nano-particles under dynamic ‘flowing' conditions. This new experimental approach allows self-assembly to be examined in a new way at the nano-level, giving rise to unprecedented mechanistic information unmasking the complexities of molecular self-assembly.

Self-assembly describes the process by which objects form a particular arrangement without any external manipulation.

During the experiment, the researchers observed the self-assembly of molybdenum oxide wheel molecules around an intermediate structure in the centre of the wheel which they found to be the ‘template' or scaffold used to construct the larger molecule. Following completion of the molybdenum oxide wheel molecule, which is just 3.6 nanometres in diameter, the template was ejected, freeing it to repeat the process.

The researchers were able to ‘photograph' this process and the template using X-ray crystallography.

Professor Leroy Cronin, Gardiner Chair of Chemistry, Department of Chemistry, who devised and led the study, said: "This advance is very important since in the construction of molecular nano-objects we must rely on ‘self-assembly' where the nano-scale objects builds itself - a process which is almost impossible to understand or control using current step-wise chemical synthesis approaches

"Therefore, understanding the assembly process is vital if we are to create a new range of functional nano-objects.

"This discovery could lead the way for the designed assembly of a whole range of precisely-defined nano-particles with applications in electronics, medicine, and catalysis to allow the design of intelligent or smart nano-sensors and nano-functional machines, not to mention the fundamental implications regarding the assembly of complex chemical systems, the most spectacular example of which are living cells."

The idea of ‘molecular machines', was popularised by US engineer Eric Drexler from the 1970s and involves controlling the positions of molecules in chemical reactions to obtain the desired result.

While scientists can already synthesise many substances and materials in chemistry through the interactions of different compounds, at the nanoscale the task becomes almost impossible because it becomes harder to control.

Cronin added: "This result is massively interesting, not only do we get to ‘image' self-assembly for the first time using this type of flow system, this discovery will allow us to devise new types of blueprint that could allow the assembly of a whole new class of designer nano-particles opening a whole new world of discoveries and applications.

"This approach will also give information about the fidelity of self-assembly which is of great topical interest especially related to the health impacts of nano-particles in our environment".

The paper, entitled: ‘Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel' is the cover story in the latest edition of the journal Science.


Notes to Editors

Lee Cronin has been working in the area of Molecular Self Assembly for the last decade and was recently awarded a 2007 £70,000 Philip Leverhulme Prize for his efforts in this area. He leads a team looking to apply self assembly to design new molecular computers and devices and was awarded a £3.8 M programme grant in this area by the EPSRC in November 2009.

The molybdenum oxide wheels were first discovered by Achim Mueller and colleagues at University of Bielefeld, and they have been the basis for a new type of chemistry and applications in material science.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow Media Relations Office
0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Chemistry

A micro-thermometer to record tiny temperature changes May 15th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Possible Futures

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Self Assembly

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Nanomedicine

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Nanomedicine -- Targeting cancer cells with sugars May 14th, 2018

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Sensors

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Scientists Use Nanotechnology to Detect Molecular Biomarker for Osteoarthritis March 13th, 2018

Nanoelectronics

Supersonic waves may help electronics beat the heat May 18th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Announcements

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Nanobiotechnology

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Nanomedicine -- Targeting cancer cells with sugars May 14th, 2018

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project