Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists ‘photograph’ nano-particle self-assembly

Abstract:
Scientists at the University of Glasgow have imaged the self-assembly of nano-particles, unveiling the blueprint for building designer molecular machines atom-by-atom.

Scientists ‘photograph’ nano-particle self-assembly

Scotland | Posted on January 4th, 2010

Working out how nano-particles are built is key to developing new ‘intelligent materials', electronic devices, and understanding the bio-machinery that operates in living cells.

The ability to control this self-assembly has profound consequences for the development of new technologies as well as understanding the basis for complex chemistry, and for example, the origins of life.

In a study reported in the journal Science this week, researchers at Glasgow, along with colleagues at the University of Bielefeld, Germany, devised an experiment which enabled them to observe molecules being constructed around what appeared to be a transient template cluster.

The experiment involved the construction a flow reactor system for the assembly of the nano-particles under dynamic ‘flowing' conditions. This new experimental approach allows self-assembly to be examined in a new way at the nano-level, giving rise to unprecedented mechanistic information unmasking the complexities of molecular self-assembly.

Self-assembly describes the process by which objects form a particular arrangement without any external manipulation.

During the experiment, the researchers observed the self-assembly of molybdenum oxide wheel molecules around an intermediate structure in the centre of the wheel which they found to be the ‘template' or scaffold used to construct the larger molecule. Following completion of the molybdenum oxide wheel molecule, which is just 3.6 nanometres in diameter, the template was ejected, freeing it to repeat the process.

The researchers were able to ‘photograph' this process and the template using X-ray crystallography.

Professor Leroy Cronin, Gardiner Chair of Chemistry, Department of Chemistry, who devised and led the study, said: "This advance is very important since in the construction of molecular nano-objects we must rely on ‘self-assembly' where the nano-scale objects builds itself - a process which is almost impossible to understand or control using current step-wise chemical synthesis approaches

"Therefore, understanding the assembly process is vital if we are to create a new range of functional nano-objects.

"This discovery could lead the way for the designed assembly of a whole range of precisely-defined nano-particles with applications in electronics, medicine, and catalysis to allow the design of intelligent or smart nano-sensors and nano-functional machines, not to mention the fundamental implications regarding the assembly of complex chemical systems, the most spectacular example of which are living cells."

The idea of ‘molecular machines', was popularised by US engineer Eric Drexler from the 1970s and involves controlling the positions of molecules in chemical reactions to obtain the desired result.

While scientists can already synthesise many substances and materials in chemistry through the interactions of different compounds, at the nanoscale the task becomes almost impossible because it becomes harder to control.

Cronin added: "This result is massively interesting, not only do we get to ‘image' self-assembly for the first time using this type of flow system, this discovery will allow us to devise new types of blueprint that could allow the assembly of a whole new class of designer nano-particles opening a whole new world of discoveries and applications.

"This approach will also give information about the fidelity of self-assembly which is of great topical interest especially related to the health impacts of nano-particles in our environment".

The paper, entitled: ‘Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel' is the cover story in the latest edition of the journal Science.


Notes to Editors

Lee Cronin has been working in the area of Molecular Self Assembly for the last decade and was recently awarded a 2007 £70,000 Philip Leverhulme Prize for his efforts in this area. He leads a team looking to apply self assembly to design new molecular computers and devices and was awarded a £3.8 M programme grant in this area by the EPSRC in November 2009.

The molybdenum oxide wheels were first discovered by Achim Mueller and colleagues at University of Bielefeld, and they have been the basis for a new type of chemistry and applications in material science.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow Media Relations Office
0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE