Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists ‘photograph’ nano-particle self-assembly

Abstract:
Scientists at the University of Glasgow have imaged the self-assembly of nano-particles, unveiling the blueprint for building designer molecular machines atom-by-atom.

Scientists ‘photograph’ nano-particle self-assembly

Scotland | Posted on January 4th, 2010

Working out how nano-particles are built is key to developing new ‘intelligent materials', electronic devices, and understanding the bio-machinery that operates in living cells.

The ability to control this self-assembly has profound consequences for the development of new technologies as well as understanding the basis for complex chemistry, and for example, the origins of life.

In a study reported in the journal Science this week, researchers at Glasgow, along with colleagues at the University of Bielefeld, Germany, devised an experiment which enabled them to observe molecules being constructed around what appeared to be a transient template cluster.

The experiment involved the construction a flow reactor system for the assembly of the nano-particles under dynamic ‘flowing' conditions. This new experimental approach allows self-assembly to be examined in a new way at the nano-level, giving rise to unprecedented mechanistic information unmasking the complexities of molecular self-assembly.

Self-assembly describes the process by which objects form a particular arrangement without any external manipulation.

During the experiment, the researchers observed the self-assembly of molybdenum oxide wheel molecules around an intermediate structure in the centre of the wheel which they found to be the ‘template' or scaffold used to construct the larger molecule. Following completion of the molybdenum oxide wheel molecule, which is just 3.6 nanometres in diameter, the template was ejected, freeing it to repeat the process.

The researchers were able to ‘photograph' this process and the template using X-ray crystallography.

Professor Leroy Cronin, Gardiner Chair of Chemistry, Department of Chemistry, who devised and led the study, said: "This advance is very important since in the construction of molecular nano-objects we must rely on ‘self-assembly' where the nano-scale objects builds itself - a process which is almost impossible to understand or control using current step-wise chemical synthesis approaches

"Therefore, understanding the assembly process is vital if we are to create a new range of functional nano-objects.

"This discovery could lead the way for the designed assembly of a whole range of precisely-defined nano-particles with applications in electronics, medicine, and catalysis to allow the design of intelligent or smart nano-sensors and nano-functional machines, not to mention the fundamental implications regarding the assembly of complex chemical systems, the most spectacular example of which are living cells."

The idea of ‘molecular machines', was popularised by US engineer Eric Drexler from the 1970s and involves controlling the positions of molecules in chemical reactions to obtain the desired result.

While scientists can already synthesise many substances and materials in chemistry through the interactions of different compounds, at the nanoscale the task becomes almost impossible because it becomes harder to control.

Cronin added: "This result is massively interesting, not only do we get to ‘image' self-assembly for the first time using this type of flow system, this discovery will allow us to devise new types of blueprint that could allow the assembly of a whole new class of designer nano-particles opening a whole new world of discoveries and applications.

"This approach will also give information about the fidelity of self-assembly which is of great topical interest especially related to the health impacts of nano-particles in our environment".

The paper, entitled: ‘Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel' is the cover story in the latest edition of the journal Science.


Notes to Editors

Lee Cronin has been working in the area of Molecular Self Assembly for the last decade and was recently awarded a 2007 £70,000 Philip Leverhulme Prize for his efforts in this area. He leads a team looking to apply self assembly to design new molecular computers and devices and was awarded a £3.8 M programme grant in this area by the EPSRC in November 2009.

The molybdenum oxide wheels were first discovered by Achim Mueller and colleagues at University of Bielefeld, and they have been the basis for a new type of chemistry and applications in material science.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow Media Relations Office
0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Possible Futures

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic