Home > News > Saser - The Sonic Laser
July 1st, 2009
Saser - The Sonic Laser
Abstract:
Scientists from the University of Nottingham have produced a new type of acoustic laser device, called Saser. It is a sonic equivalent to the laser, capable of producing an intense beam of uniform sound waves on a nano scale. The new device could have significant and useful applications in a variety of fields, such as computing and imaging.
The Saser mimics the laser technology, but instead of light waves it employs sound waves, and instead of photons it sends phonons. In addition, instead of sending waves through an optical cavity, the sonic Saser travels through a tiny structure called a ‘superlattice'. This structure is made out of 50 super-thin sheets of two alternating semiconductor materials, Gallium Arsenide and Aluminum Arsenide. In order to achieve the exact effect, each layer must be as thin as air - just a few atoms thick. When the phonons are inside the superlattice, they bounce, multiply and eventually escape in the form of an ultra-high frequency photon beam.
Another application converts the Saser beam to terahertz electromagnetic waves. These can be used for medical imaging and security screening. In the nanotechnology field, high intensity sound waves can be used to change nanostructures' electronic properties; therefore, the Saser could be used as a high-speed terahertz clock, which could make the computers of the future a thousand times faster.
Source:
thefutureofthings.com
Related News Press |
News and information
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
New chip ramps up AI computing efficiency August 19th, 2022
How randomly moving electrons can improve cyber security May 27th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Possible Futures
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Nanomedicine
Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
Nanoelectronics
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022
Discoveries
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Announcements
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Homeland Security
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Nanobiotechnology
Nanonitrator: novel enhancer of inorganic nitrate protective effects, predicated on swarm learning approach May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |