Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

Abstract:
* development partnership will also accelerate delivery of proven process recipes

Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

Trapani, Sicily | Posted on July 11th, 2007

Surrey NanoSystems has won a major order for its innovative carbon nanotube growth tool from ITA, the advanced technologies research institute in Trapani, Sicily.

ITA selected the NanoGrowth tool for its ability to repeatably grow defined carbon nanotube configurations, and to grow materials at low temperatures. The institute will use the equipment to research carbon nanotube based nanocomposites and mechanical sensors, for medical and aerospace applications.

The tool configuration chosen includes a large range of materials processing modules, to support ITA's diverse research programs. In addition to the NanoGrowth tool's core CVD (chemical vapour deposition) and PECVD (plasma-enhanced CVD) nanomaterial growth capabilities, Surrey NanoSystems will fit modules for catalyst delivery, ion etching and thin-film deposition. This wide-ranging capability will allow ITA researchers to grow precision single- and multi-walled nanotube structures and silicon nanowires, as well as being able to dope, etch and deposit silicon.

The tool will be delivered in August 2007. ITA will become a lead user for Surrey NanoSystems, and in addition to the provision of equipment, the two organizations have signed a three-year development partnership to share intellectual property. Surrey NanoSystems is developing advanced processing templates to support the fabrication of carbon nanotube and silicon nanowire structures for commercial manufacture of semiconductor devices and related electronics applications. ITA will receive these recipes in advance of launch, in return for beta testing. These test bed services - which Surrey NanoSystems will also operate with other partners worldwide - is a major element of the company's strategy to ensure that its processing recipes are both field proven and highly repeatable from tool to tool.

Carbon nanotube research at ITA will be coordinated by Dr Giulia Lanzara. She worked with Surrey NanoSystems to specify the tool configuration, and explains: "I've had a lot of experience growing carbon nanotubes using a horizontal quartz tube furnace. For ITA's forthcoming research projects into nanocomposites and mechanical sensors we need to be able to repeatably grow specific nanotube configurations. The architecture of this tool has been specifically designed to produce repeatable results. Along with excellent expansion capability, NanoGrowth gives us a platform to develop our ideas and create commercial-grade automated processes."

"We are delighted to win such an influential order, and are especially pleased with technical feedback that we will receive from ITA, which will help us to bring further processing modules and techniques to market more quickly, and with the assurance of cross-platform repeatability," adds Ben Jensen, CTO of Surrey NanoSystems.

The NanoGrowth 1000n tool has been purpose-designed for nanomaterial fabrication. Precision fabrication and configuration repeatability principles have been at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among the tool's features are an ultra-high purity gas delivery system and flexible closed-loop controls that allow users to define target tolerances to achieve a high level of repeatability during all phases of processing.

####

About Surrey NanoSystems
Surrey NanoSystems is focused on providing production platforms for using carbon nanotubes and other nanowires in high technology applications, including as a replacement for the conventional metals used in the fabrication of silicon chips - which are approaching their performance limits. The concept behind Surrey NanoSystems started in 2005, as a joint venture between The University of Surrey's Advanced Technology Institute (ATI), who had developed a pioneering process for manufacturing carbon nanotubes at room temperature, and the thin film tool manufacturer CEVP. The organizations united to turn the carbon nanotube fabrication idea into a practical, commercial tool. In December 2006, IP Group provided substantial funding to create a new corporation, Surrey NanoSystems, formed with staff and IP from ATI and CEVP.

ITA. Located in the ASI Research Park in Trapani, Sicily, ITA (Advanced Technologies Institute) is a non-profit consortium of university, industrial and research institutes providing a center of scientific excellence in the Mediterranean region for high-technology development to support the growth of high-tech companies.

For more information, please click here

Contacts:
Surrey NanoSystems
Euro Business Park, Building 24,
Newhaven, BN9 0DQ, UK.
+44 (0)1273 515899


Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Sensors

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Materials/Metamaterials

Record high photoconductivity for new metal-organic framework material December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Tools

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Aerospace/Space

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

New-Contracts/Sales/Customers

Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance November 3rd, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project