Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > UIC and Japanese chemists close in on molecular switch

Abstract:
The electronics industry believes that when it comes to circuits, smaller is better -- and many foresee a future where electrical switches and circuits will be as tiny as single molecules.

UIC and Japanese chemists close in on molecular switch

Chicago, IL | Posted on July 10th, 2007

Turning this dream into reality may be a step closer, thanks to a collaboration between chemists at the University of Illinois at Chicago and Japan's RIKEN research institute. The international team successfully formed a single chemical bond on a single molecule, then broke that bond to restore the original molecule -- without disturbing any bonds to adjacent atoms within the molecule.

In essence, they created a molecular-sized electronic switch.

"The key thing we were after was reversibility," said Michael Trenary, UIC professor of chemistry and one of the lead researchers.

Trenary's lab specializes in understanding the workings of surface chemistry -- notably how molecules interact with metals. RIKEN operates a nanoscience center that offers a vibration-free platform for the tool called a scanning tunneling microscope used to perform this molecular-level task. With the ability to cool to temperatures approaching absolute zero to stabilize molecules, the microscope is equipped with a probe that can then manipulate single molecules.

"Others have done work at the single-molecule level, but nobody has been able to get the control we have," said Trenary.

Working at RIKEN, Trenary and his Japanese colleagues converted methylisocyanide to methylaminocarbyne on a platinum surface -- a chemical mix that holds particular promise in the field of molecular electronics.

Methylisocyanide was introduced as a gas into the microscope's vacuum chamber, and the molecules attached to the super-cooled platinum. Next, hydrogen gas was injected, which breaks up into atoms when it contacts the platinum. The hydrogen atoms bonded to the methylisocyanide to form methylaminocarbyne.

The microscope can image single molecules and atoms. Using its tiny probe, the researchers manipulated the tip to just above a single molecule and gave it a small electrical pulse. The hydrogen atom popped off -- reversibility was achieved.

"It's a way to alter the metal-molecular contact, which is why it's of interest to those in molecular electronics," Trenary said. "There's been a fair amount of research on using isocyanides for molecular electronics, but without understanding the details of the bonding interaction."

"You've got to first understand the surface chemistry in detail," he said. "When you understand that, then you can use these probes to manipulate, fine-tune and control the way you want to."

Research chemists from RIKEN include Satoshi Katano, Yousoo Kim, Masafumi Hori and Maki Kawai.

The findings were reported in the June 29 issue of Science.

####

For more information, please click here

Contacts:
Paul Francuch

312-996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

On the path toward molecular robots: Scientists at Japan's Hokkaido University have developed light-powered molecular motors that repetitively bend and unbend, bringing us closer to molecular robots. July 8th, 2016

Chip Technology

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Nanoelectronics

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Discoveries

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic