Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UIC and Japanese chemists close in on molecular switch

Abstract:
The electronics industry believes that when it comes to circuits, smaller is better -- and many foresee a future where electrical switches and circuits will be as tiny as single molecules.

UIC and Japanese chemists close in on molecular switch

Chicago, IL | Posted on July 10th, 2007

Turning this dream into reality may be a step closer, thanks to a collaboration between chemists at the University of Illinois at Chicago and Japan's RIKEN research institute. The international team successfully formed a single chemical bond on a single molecule, then broke that bond to restore the original molecule -- without disturbing any bonds to adjacent atoms within the molecule.

In essence, they created a molecular-sized electronic switch.

"The key thing we were after was reversibility," said Michael Trenary, UIC professor of chemistry and one of the lead researchers.

Trenary's lab specializes in understanding the workings of surface chemistry -- notably how molecules interact with metals. RIKEN operates a nanoscience center that offers a vibration-free platform for the tool called a scanning tunneling microscope used to perform this molecular-level task. With the ability to cool to temperatures approaching absolute zero to stabilize molecules, the microscope is equipped with a probe that can then manipulate single molecules.

"Others have done work at the single-molecule level, but nobody has been able to get the control we have," said Trenary.

Working at RIKEN, Trenary and his Japanese colleagues converted methylisocyanide to methylaminocarbyne on a platinum surface -- a chemical mix that holds particular promise in the field of molecular electronics.

Methylisocyanide was introduced as a gas into the microscope's vacuum chamber, and the molecules attached to the super-cooled platinum. Next, hydrogen gas was injected, which breaks up into atoms when it contacts the platinum. The hydrogen atoms bonded to the methylisocyanide to form methylaminocarbyne.

The microscope can image single molecules and atoms. Using its tiny probe, the researchers manipulated the tip to just above a single molecule and gave it a small electrical pulse. The hydrogen atom popped off -- reversibility was achieved.

"It's a way to alter the metal-molecular contact, which is why it's of interest to those in molecular electronics," Trenary said. "There's been a fair amount of research on using isocyanides for molecular electronics, but without understanding the details of the bonding interaction."

"You've got to first understand the surface chemistry in detail," he said. "When you understand that, then you can use these probes to manipulate, fine-tune and control the way you want to."

Research chemists from RIKEN include Satoshi Katano, Yousoo Kim, Masafumi Hori and Maki Kawai.

The findings were reported in the June 29 issue of Science.

####

For more information, please click here

Contacts:
Paul Francuch

312-996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Structural Insights into the Inner Workings of a Viral Nanomachine April 3rd, 2014

Big data tackles tiny molecular machines:Rice University technique able to analyze conformations of complex molecular machines March 14th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE