Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis

Fabrication and in vivo mechanism of self-propelled ferroptosis nanoinducer for tumor targeting.

Credit
By Wenxin Xu, Hao Tian, Yanzhen Song, Hanfeng Qin, Junbin Gao, Yichi Chen, Weichang Huang, Lin Lin, Haixin Tan, Yicheng Ye, Xiaoting Zhang, Daniela A Wilson, Guang Yang, Fei Peng and Yingfeng Tu
Fabrication and in vivo mechanism of self-propelled ferroptosis nanoinducer for tumor targeting. Credit By Wenxin Xu, Hao Tian, Yanzhen Song, Hanfeng Qin, Junbin Gao, Yichi Chen, Weichang Huang, Lin Lin, Haixin Tan, Yicheng Ye, Xiaoting Zhang, Daniela A Wilson, Guang Yang, Fei Peng and Yingfeng Tu

Abstract:
A novel self-propelled ferroptosis nanoinducer developed by Southern Medical University was able to achieve deeper penetration into tumor tissues to show enhanced anti-cancer effects, while remaining considerable biocompatibility.

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis

Bristol, UK | Posted on June 6th, 2025

The work, reported in the International Journal of Extreme Manufacturing, lays the groundwork for developing biocompatible, multifunctional nanotherapeutics for cancer treatment.

Limited penetration depth into tumor tissues continues to hinder the development of nanotherapeutics for cancer treatment.

“Conventional nanoplatforms cannot achieve active penetration, leading to poor penetration depth and efficiency into tumor tissues,” said Yingfeng Tu, the corresponding author on the paper and a professor at the School of Pharmaceutical Sciences, Southern Medical University. “It might weaken the tumor inhibitory effect of the nanoplatform. Here we’re saying, why not design a nanotherapeutic that can actively penetrate deeper into tumor tissues via enhanced diffusion?”

Cancer is still a major killer threatening human health, with increasing mortality rates and a growing economic burden. Current clinical treatments such as surgery, radiotherapy, and chemotherapy are often associated with significant systemic side effects.

Ferroptosis, a newly defined form of programmed cell death, plays a crucial regulatory role in tumor development. Therefore, researchers have recently developed ferroptosis-based nanoplatforms as a strategy for cancer treatment, but these approaches are still limited by poor biocompatibility, shallow tumor penetration, and low active pharmaceutical ingredient (API) loading.

To address these issues, Tu and coworkers used glutaraldehyde as a crosslinking agent to fabricate active nanoparticles consisting of only two endogenous proteins: glucose oxidase and ferritin. The resulting self-propelled nanotherapeutics exhibited enhanced diffusion, enabling deeper penetration into tumor tissues. Through the synergistic effect of the two components, intracellular ferroptosis was induced, leading to cell membrane disruption and the simultaneous destruction of multiple tumor cell organelles.

The researchers spent two years on a comprehensive study of their self-propelled ferroptosis nanoinducer, assessing its characterization, motion behavior and chemotactic behavior. Additionally, they evaluated tumor inhibitory performance of the developed nanotherapeutic both in vitro and in vivo.

“Biocompatibility is an issue that deserves greater attention,” said the corresponding author Yingfeng Tu, “With the pure-protein framework, potential systemic toxicity can be minimized. The self-propelled nanotherapeutic we developed is capable of deeper tumor penetration with negligible toxicity at the same time. We believe this platform holds strong potential for cancer treatment.”

The researchers are continuing the work, hoping to verify its tumor inhibitory effects on other cancer types, including non-small cell lung cancer. They are dedicated to facilitating its translation from bench to bedside.

####

About International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing (IF: 16.1, consecutive 1st in the Engineering, Manufacturing category) is a multidisciplinary and double-anonymous peer-reviewed journal uniquely publishing original articles and reviews of the highest quality and impact in the areas related to extreme manufacturing, ranging from fundamentals to process, measurement, and systems, as well as materials, structures, and devices with extreme functionalities.

Visit our webpage, Like us on Facebook, and follow us on Twitter and LinkedIn.

For more information, please click here

Contacts:
Media Contact

Yue YAO
International Journal of Extreme Manufacturing


Expert Contact

Yingfeng Tu
Southern Medical University

Copyright © International Journal of Extreme Manufacturing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

Cancer

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanofabrication

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

New chip opens door to AI computing at light speed February 16th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model: New treatment traps, neutralizes toxic proteins to stop disease progression May 16th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model: New treatment traps, neutralizes toxic proteins to stop disease progression May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project