Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > VUB team develops breakthrough nanobody technology against liver inflammation

Abstract:
“During a previous research project financed by an ERC Starting Grant, my team discovered that a specific type of molecule, pannexins, played an important role in certain inflammatory diseases,” says Vinken. “Pannexins are tube-like molecules found in the cell membrane. In a healthy state, these tubes are closed, but when diseased, they open, allowing substances through, leading to inflammation and eventually cell death. By using nanobodies, the opening of these pannexin tubes is suppressed, interrupting the inflammatory reaction.”

VUB team develops breakthrough nanobody technology against liver inflammation

Brussels, Belgium | Posted on December 8th, 2023

Vinken received additional funding, an ERC Proof of Concept and an FWO research grant, to develop this nanobody technology. For this, he is working with Professor Nick Devoogdt and postdoc Timo De Groof from the Molecular Imaging and Therapy research group at VUB. Devoogdt and De Groof specialise in creating and visualising nanobodies.

“VUB has a long tradition of research into nanobodies,” says Devoogdt. “This tradition began with Professor Raymond Hamers. In 1989, with his wife, Cécile Casterman, and Serge Muyldermans, he discovered that camel blood contained a smaller sort of antibody. The discovery led to several spin-offs and various innovative therapeutic techniques. Through the work of Mathieu Vinken, we have discovered another promising research direction. Specifically, we have been able to show that nanobody technology works much better in the event of paracetamol overdose than the current remedy using acetylcysteine.”

“Nanobodies close pannexins with unprecedented efficiency,” says Vinken. Until now, research has been conducted in vitro and on a mouse model. In the next step, a clinical study will investigate possible side effects. The potential of pannexin-specific nanobodies to treat more complex disease states in combination with other agents will eventually be investigated. The findings were published on 11 October in the Journal of Nanobiotechnology. The team has also filed a patent application with a view to further (commercial) development of the technology and attracting investors or business partners for collaboration.

####

For more information, please click here

Contacts:
Sam Jaspers
Vrije Universiteit Brussel

Copyright © Vrije Universiteit Brussel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project