Home > Press > Electron collider on a chip
![]() |
Simulation of the electron trajectories after a collision in an electronic beam splitter CREDIT Physikalisch-Technische Bundesanstalt |
Abstract:
Electrical current is a stream of charged elementary particles. In semiconductor devices, ballistic electrons move at high speeds, making it difficult to address them individually. A controlled collision of individual electrons can provide the time resolution required for one electron to interrogate the other. The operating principle of such an electron collider circuit is similar to hitting one fast moving projectile with another well-timed shot. The challenge is therefore to precisely synchronize two individual electrons to exploit their interaction.
For this purpose, scientists at PTB have now developed a nanoscale collider on a semiconductor chip. Such a device integrates two single-electron sources that can be triggered to picosecond accuracy. Single-electron detectors record every outcome of the collision. An electron pair is generated by two separated sources and placed on intersecting paths such that a collision can occur. If the sources are precisely synchronized, the interaction between the electrons of the pair will determine which final signalling path will be reached by which individual particle. Despite the brevity of the encounter, the theoretical models developed at the University of Latvia with inputs from the Technical University of Braunschweig made it possible to infer electron trajectories from the experimental data and devise ways to control two-electron interaction for future applications. This demonstration of time-resolved interaction not only shows that such a flying electron can be used as an ultrafast sensor or switch, it also proves a mechanism to generate quantum entanglement—a key component of quantum computing. Appearing jointly with the consistent findings of research teams led by NEEL and NPL, these results have been published and introduced by a “News&Views” commentary in Nature Nanotechnology
####
For more information, please click here
Contacts:
Media Contact
Erika Schow
Physikalisch-Technische Bundesanstalt (PTB)
Office: 49-531-592-9314
Expert Contact
Dr. Niels Ubbelohde
Physikalisch-Technische Bundesanstalt (PTB)
Office: +49 531 592-2534
Copyright © Physikalisch-Technische Bundesanstalt (PTB)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Quantum Physics
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Quantum Computing
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Sensors
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science April 14th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Quantum nanoscience
A quantum leap in mechanical oscillator technology August 11th, 2023
Quantum materials: Electron spin measured for the first time June 9th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |