Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second

High-resolution transmission electron microscopy image of the antiferromagnetic junction showing layers of different materials (left). Diagram showing the materials’ magnetic properties (right).

CREDIT
©2023 Nakatsuji et al.
High-resolution transmission electron microscopy image of the antiferromagnetic junction showing layers of different materials (left). Diagram showing the materials’ magnetic properties (right). CREDIT ©2023 Nakatsuji et al.

Abstract:
A class of nonvolatile memory devices, called MRAM, based on quantum magnetic materials, can offer a thousandfold performance beyond current state-of-the-art memory devices. The materials known as antiferromagnets were previously demonstrated to store stable memory states, but were difficult to read from. This new study paves an efficient way for reading the memory states, with the potential to do so incredibly quickly too.

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second

Tokyo, Japan | Posted on January 20th, 2023

You can probably blink about four times a second. You could say this frequency of blinking is 4 hertz (cycles per second). Imagine trying to blink 1 billion times a second, or at 1 gigahertz, it would be physically impossible for a human. But this is the current order of magnitude in which contemporary high-end digital devices, such as magnetic memory, switch their states as operations are performed. And many people wish to push the boundary a thousand times further, into the regime of a trillion times a second, or terahertz.

The barrier for realizing faster memory devices may be the materials used. Current high-speed MRAM chips, which aren’t yet so common as to appear in your home computer, make use of typical magnetic, or ferromagnetic, materials. These are read using a technique called tunneling magnetoresistance. This requires the magnetic constituents of ferromagnetic material to be lined up in parallel arrangements. However, this arrangement creates a strong magnetic field which limits the speed at which the memory can be read from or written to.

“We’ve made an experimental breakthrough that surpasses this limitation, and it’s thanks to a different kind of material, antiferromagnets”, said Professor Satoru Nakatsuji from the University of Tokyo’s Department of Physics. “Antiferromagnets differ from typical magnets in many ways, but in particular, we can arrange them in ways other than parallel lines. This means we can negate the magnetic field that would result from parallel arrangements. It’s thought that the magnetization of ferromagnets is necessary for tunneling magnetoresistance to read from memory. Strikingly, however, we found it’s also possible for a special class of antiferromagnets without magnetization, and hopefully it can perform at very high speeds.”

Nakatsuji and his team think that switching speeds in the terahertz range is achievable, and that this is possible at room temperature too, whereas previous attempts required much colder temperatures and did not yield such promising results. Though, to improve upon its idea, the team needs to refine its devices, and improving the way it fabricates them is key.

“Although the atomic constituents of our materials are fairly familiar — manganese, magnesium, tin, oxygen, and so on — the way in which we combine them to form a useable memory component is novel and unfamiliar,” said researcher Xianzhe Chen. “We grow crystals in a vacuum, in incredibly fine layers using two processes called molecular beam epitaxy and magnetron sputtering. The higher the vacuum, the purer the samples we can grow. It’s an extremely challenging procedure and if we improve it, we will make our lives easier and produce more effective devices too.”

These antiferromagnetic memory devices exploit a quantum phenomenon known as entanglement, or interaction at a distance. But despite this, this research is not directly related to the increasingly famous field of quantum computing. However, researchers suggest that developments such as this might be useful or even essential to build a bridge between the current paradigm of electronic computing and the emerging field of quantum computers.

Funding:
This work was partially supported by the JST-Mirai Program (no. JPMJMI20A1), the ST-CREST Program (nos. JPMJCR18T3, JST-PRESTO and JPMJPR20L7) and JSPS KAKENHI (nos. 21H04437 and 22H00290).

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Media Contact

Rohan Mehra
University of Tokyo

Expert Contact

Professor Satoru Nakatsuji
The University of Tokyo

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Memory Technology

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project