Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second

High-resolution transmission electron microscopy image of the antiferromagnetic junction showing layers of different materials (left). Diagram showing the materials’ magnetic properties (right).

CREDIT
©2023 Nakatsuji et al.
High-resolution transmission electron microscopy image of the antiferromagnetic junction showing layers of different materials (left). Diagram showing the materials’ magnetic properties (right). CREDIT ©2023 Nakatsuji et al.

Abstract:
A class of nonvolatile memory devices, called MRAM, based on quantum magnetic materials, can offer a thousandfold performance beyond current state-of-the-art memory devices. The materials known as antiferromagnets were previously demonstrated to store stable memory states, but were difficult to read from. This new study paves an efficient way for reading the memory states, with the potential to do so incredibly quickly too.

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second

Tokyo, Japan | Posted on January 20th, 2023

You can probably blink about four times a second. You could say this frequency of blinking is 4 hertz (cycles per second). Imagine trying to blink 1 billion times a second, or at 1 gigahertz, it would be physically impossible for a human. But this is the current order of magnitude in which contemporary high-end digital devices, such as magnetic memory, switch their states as operations are performed. And many people wish to push the boundary a thousand times further, into the regime of a trillion times a second, or terahertz.

The barrier for realizing faster memory devices may be the materials used. Current high-speed MRAM chips, which aren’t yet so common as to appear in your home computer, make use of typical magnetic, or ferromagnetic, materials. These are read using a technique called tunneling magnetoresistance. This requires the magnetic constituents of ferromagnetic material to be lined up in parallel arrangements. However, this arrangement creates a strong magnetic field which limits the speed at which the memory can be read from or written to.

“We’ve made an experimental breakthrough that surpasses this limitation, and it’s thanks to a different kind of material, antiferromagnets”, said Professor Satoru Nakatsuji from the University of Tokyo’s Department of Physics. “Antiferromagnets differ from typical magnets in many ways, but in particular, we can arrange them in ways other than parallel lines. This means we can negate the magnetic field that would result from parallel arrangements. It’s thought that the magnetization of ferromagnets is necessary for tunneling magnetoresistance to read from memory. Strikingly, however, we found it’s also possible for a special class of antiferromagnets without magnetization, and hopefully it can perform at very high speeds.”

Nakatsuji and his team think that switching speeds in the terahertz range is achievable, and that this is possible at room temperature too, whereas previous attempts required much colder temperatures and did not yield such promising results. Though, to improve upon its idea, the team needs to refine its devices, and improving the way it fabricates them is key.

“Although the atomic constituents of our materials are fairly familiar — manganese, magnesium, tin, oxygen, and so on — the way in which we combine them to form a useable memory component is novel and unfamiliar,” said researcher Xianzhe Chen. “We grow crystals in a vacuum, in incredibly fine layers using two processes called molecular beam epitaxy and magnetron sputtering. The higher the vacuum, the purer the samples we can grow. It’s an extremely challenging procedure and if we improve it, we will make our lives easier and produce more effective devices too.”

These antiferromagnetic memory devices exploit a quantum phenomenon known as entanglement, or interaction at a distance. But despite this, this research is not directly related to the increasingly famous field of quantum computing. However, researchers suggest that developments such as this might be useful or even essential to build a bridge between the current paradigm of electronic computing and the emerging field of quantum computers.

Funding:
This work was partially supported by the JST-Mirai Program (no. JPMJMI20A1), the ST-CREST Program (nos. JPMJCR18T3, JST-PRESTO and JPMJPR20L7) and JSPS KAKENHI (nos. 21H04437 and 22H00290).

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Media Contact

Rohan Mehra
University of Tokyo

Expert Contact

Professor Satoru Nakatsuji
The University of Tokyo

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project