Home > Press > Wafer-scale 2D MoTe₂ layers enable highly-sensitive broadband integrated infrared detector
![]() |
a, Schematic illustration of a graphene/1Tʹ-MoTe₂/Si Schottky junction device. b,Time-dependent photoresponse properties to pulsed light illumination in a broad spectral band. c, Comparison of the room-temperature specific detectivity of the Gr/1Tʹ-MoTe₂/Si Schottky junction device with other devices. CREDIT by Di Wu, Chenguang Guo, Longhui Zeng, Xiaoyan Ren, Zhifeng Shi, Long Wen, Qin Chen, Meng Zhang, Xin Jian Li, Chong-Xin Shan, and Jiansheng Jie |
Abstract:
Detection in multiple infrared (IR) regions spanning from short- and mid- to long-wave IR plays an important role in diverse fields from scientific research to wide-ranging technological applications including target identification, imaging, remote monitoring, and gas sensing. Currently, the state-of-the-art IR photodetectors are mainly dominated by conventional narrow bandgap semiconductors including In1-xGaxAs, InSb, and Hg1-xCdxTe, operating in short-wave IR (SWIR, 1-3 µm), mid-wave IR (MWIR, 3-6 µm), and long-wave IR (LWIR, 6-15 µm) spectral bands, respectively. Notably, these photodetectors not only rely on high-temperature growth process of raw materials and complex processing technique, but also suffer from the cryogenic cooling conditions with time-consuming and high power consumption. Moreover, there are several remaining technological challenges such as poor complementary metal-oxide-semiconductor (CMOS) compatibility, bulky module size, and low efficiency, which severely restrict the wider application of these detectors.
In a new paper published in Light Science & Application, Prof. Di Wu and Xinjian Li from Zhengzhou University, Dr. Longhui Zeng from the University of California-San Diego, and Prof. Jiansheng Jie from Soochow University demonstrated a facile thermal-assisted tellurization route for the van der Waals (vdW) growth of wafer-scale phase-controlled 2D MoTe2 layers. The type-II Weyl semimetal 1T′-MoTe2 layers were directly deposited on prepatterned Si substrate to in-situ fabricate 1T'-MoTe2/Si vertical Schottky junction. The high-quality Schottky junction interface and vertical device structure with graphene electrode ensure efficient carrier transport and reduce carrier recombination, enabling the detector to achieve an ultrabroadband detection range of up to 10.6 μm and a room-temperature specific detectivity of over 108 Jones in the mid-infrared region. The wafer-scale 2D MoTe2 layers have also enabled the integrated device array to be successfully implemented for high-resolution uncooled mid-infrared imaging.
In this study, a pre-deposited Mo film as a precursor was transformed to 2D MoTe2 layer via vdW growth mechanism through a direct thermal-assisted tellurization process. As a matter of fact, the phase transition of MoTe2 is highly dependent on the growth time. By controlling the growth time, 2-inch 2H and 1Tʹ- MoTe2 layers with good uniformity were obtained, respectively. By virtue of the facile and scalable thermal-assisted tellurization strategy, the thickness of the 2D MoTe2 layers can be precisely tailored by tuning the initial Mo film thickness.
The vdW growth of the large-area 2D MoTe2 layers offers more flexibility for the development of high-sensitivity optoelectrical devices. In light of this, a 1Tʹ-MoTe2/Si vertical Schottky junction device was developed by the in-situ vdW growth of 1Tʹ-MoTe2 layers on a pre-patterned Si substrate. To ensure the efficient carrier collection, monolayer graphene was selected as a top transparent contact with 1Tʹ-MoTe2 layer. The photodetector demonstrates high-sensitive self-powered ultrabroadband detection performance with a detection range of up to 10.6 µm and a large room-temperature specific detectivity of over 108 Jones in the mid-infrared (MIR) range. The obtained room-temperature specific detectivity is superior to the most 2D material-based IR detectors and some commercial detectors.
Given the superior IR detection capability of the photodetector, the room-temperature IR imaging was further explored with the Gr/1Tʹ-MoTe2/Si Schottky junction device. The photocurrent mapping image of "LWIR" pattern with a large current contrast ratio over 10 and sharp edges was obtained from an individual detector under the IR illumination of 10.6 μm at room temperature. Furthermore, the large-scale uniform 2D MoTe2 layer enables the fabrication of an 8 × 8 1Tʹ-MoTe2/Si Schottky junction device array for IR imaging application. Upon MIR laser illumination, the large difference between the currents of the exposed and unexposed pixels results in a high-resolution heart-shaped image with large current ratios of 100, 68, and 51 for 3.0, 4.6, and 10.6 μm laser illumination at room-temperature, respectively. Such excellent room-temperature imaging capability with good homogeneity of the device array makes this finding great promise for MIR imaging applications. The wafer-scale growth of 2D MoTe2 layers compatible with Si technology shows great potential for next-generation on-chip Si CMOS systems with low-power consumption and low-cost production.
####
For more information, please click here
Contacts:
Media Contact
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Office: 86-431-861-76851
Expert Contact
Xinjian Li
Zhengzhou University, China
Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
2 Dimensional Materials
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
Two types of ultrafast mode-locking operations generation from an Er-doped fiber laser based on germanene nanosheets July 21st, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Sensors
Electron collider on a chip June 30th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |