Home > Press > 3D-printed decoder, AI-enabled image compression could enable higher-res displays
![]() |
The system uses an algorithm that encodes a high-resolution image to a lower-resolution one, and then translates the compressed image back to its original resolution by a decoder that unscrambles incoming light. CREDIT Ozcan Lab/UCLA |
Abstract:
FINDINGS
A UCLA team has developed a technology for projecting high-resolution computer-generated images using one-sixteenth the number of pixels contained in their source images. The system compresses images based on an artificial intelligence algorithm, and then decodes them using an optical decoder — a thin, translucent sheet of plastic produced using a 3D printer — that is designed to interact with light in a specific way as part of the same algorithm. The decoder consumes no power, which could result in higher-resolution displays that use less power and require less data than current display technologies.
BACKGROUND
Projecting high-resolution 3D holograms requires so many pixels that the task is beyond the reach of current consumer technology. The ability to compress image data and instantly decode compressed images using a thin, transparent material that does not consume power, as demonstrated in the study, could help overcome that barrier and result in wearable technology that produces higher quality images while using less power and storage than today’s consumer technology.
METHOD
The system uses an algorithm that encodes a high-resolution image to a lower-resolution one. The result is a pixelated pattern, similar to a QR code, that is unreadable to the human eye. That compressed image is then translated back to its original resolution by a decoder designed to bend and unscramble the incoming light.
Testing the system on images in black, white and shades of gray, the researchers demonstrated that the technology could effectively project high-resolution images using encoded images with only about 6% of the pixels in the original. The team also tested a similar system that successfully encoded and decoded color images.
IMPACT
The technology could eventually be used for applications like projecting high-resolution holographic images for virtual reality or augmented reality goggles. By encoding images using a fraction of the data contained in the original and decoding them without using electricity, the system could lead to holographic displays that are smaller, less expensive and have faster refresh rates.
The technology could appear in consumer electronics as soon as five years from now, according to the paper’s corresponding author, Aydogan Ozcan, Chancellor’s Professor of Electrical Engineering and Bioengineering, Volgenau Professor of Engineering Innovation at the UCLA Samueli School of Engineering and an associate director of the California NanoSystems Institute at UCLA.
Other potential applications include image encryption and medical imaging.
AUTHORS
The co-first authors of the study are UCLA doctoral students Çağatay Işıl and Deniz Mengu. Mona Jarrahi, UCLA’s Northrop Grumman Professor of Electrical Engineering, is a co-senior author. Additional authors are Yifan Zhao, Anika Tabassum, Jingxi Li and Yi Luo, all of UCLA.
####
For more information, please click here
Contacts:
Nicole Wilkins
California NanoSystems Institute
Cell: 3108696835
Copyright © California NanoSystems Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Display technology/LEDs/SS Lighting/OLEDs
Simple ballpoint pen can write custom LEDs August 11th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Liquid crystal templated chiral nanomaterials October 14th, 2022
3D & 4D printing/Additive-manufacturing
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Quantum powers researchers to see the unseen September 8th, 2023
Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Artificial Intelligence
Data can now be processed at the speed of light! April 14th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
New chip ramps up AI computing efficiency August 19th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |