Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity

Using a technique known as molecular beam epitaxy, Penn State researchers have synthesized hybrid structures only a few atoms thick that are a good platform for the exploration of an unusual form of superconductivity called topological superconductivity. The structures are composed of a topological insulator Bi2Se3 film and a superconducting NbSe2 monolayer (electronic band structures shown in the top panel) and demonstrate a shift from a kind of superconductivity called Ising-type to a different kind called Rashba-type (bottom panel). Credit: Yi et al. Nature Materials.
Using a technique known as molecular beam epitaxy, Penn State researchers have synthesized hybrid structures only a few atoms thick that are a good platform for the exploration of an unusual form of superconductivity called topological superconductivity. The structures are composed of a topological insulator Bi2Se3 film and a superconducting NbSe2 monolayer (electronic band structures shown in the top panel) and demonstrate a shift from a kind of superconductivity called Ising-type to a different kind called Rashba-type (bottom panel). Credit: Yi et al. Nature Materials.

Abstract:
A new way to combine two materials with special electrical properties — a monolayer superconductor and a topological insulator — provides the best platform to date to explore an unusual form of superconductivity called topological superconductivity. The combination could provide the basis for topological quantum computers that are more stable than their traditional counterparts.

New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity

University Park, PA | Posted on October 28th, 2022

Superconductors — used in powerful magnets, digital circuits, and imaging devices — allow the electric current to pass without resistance, while topological insulators are thin films only a few atoms thick that restrict the movement of electrons to their edges, which can result in unique properties. A team led by researchers at Penn State describe how they have paired the two materials in a paper appearing Oct. 27 in the journal Nature Materials.

“The future of quantum computing depends on a kind of material that we call a topological superconductor, which can be formed by combining a topological insulator with a superconductor, but the actual process of combining these two materials is challenging,” said Cui-Zu Chang, Henry W. Knerr Early Career Professor and Associate Professor of Physics at Penn State and leader of the research team. “In this study, we used a technique called molecular beam epitaxy to synthesize both topological insulator and superconductor films and create a two-dimensional heterostructure that is an excellent platform to explore the phenomenon of topological superconductivity.”

In previous experiments to combine the two materials, the superconductivity in thin films usually disappears once a topological insulator layer is grown on top. Physicists have been able to add a topological insulator film onto a three-dimensional “bulk” superconductor and retain the properties of both materials. However, applications for topological superconductors, such as chips with low power consumption inside quantum computers or smartphones, would need to be two-dimensional.

In this paper, the research team stacked a topological insulator film made of bismuth selenide (Bi2Se3) with different thicknesses on a superconductor film made of monolayer niobium diselenide (NbSe2), resulting in a two-dimensional end-product. By synthesizing the heterostructures at very lower temperature, the team was able to retain both the topological and superconducting properties.

“In superconductors, electrons form ‘Cooper pairs’ and can flow with zero resistance, but a strong magnetic field can break those pairs,” said Hemian Yi, a postdoctoral scholar in the Chang Research Group at Penn State and the first author of the paper. “The monolayer superconductor film we used is known for its ‘Ising-type superconductivity,’ which means that the Cooper pairs are very robust against the in-plane magnetic fields. We would also expect the topological superconducting phase formed in our heterostructures to be robust in this way.”

By subtly adjusting the thickness of the topological insulator, the researchers found that the heterostructure shifted from Ising-type superconductivity — where the electron spin is perpendicular to the film — to another kind of superconductivity called “Rashba-type superconductivity” — where the electron spin is parallel to the film. This phenomenon is also observed in the researchers’ theoretical calculations and simulations.

This heterostructure could also be a good platform for the exploration of Majorana fermions, an elusive particle that would be a major contributor to making a topological quantum computer more stable than its predecessors.

“This is an excellent platform for the exploration of topological superconductors, and we are hopeful that we will find evidence of topological superconductivity in our continuing work,” said Chang. “Once we have solid evidence of topological superconductivity and demonstrate Majorana physics, then this type of system could be adapted for quantum computing and other applications.”

In addition to Chang and Yi, the research team at Penn State includes Lun-Hui Hu, Yuanxi Wang, Run Xiao, Danielle Reifsnyder Hickey, Chengye Dong, Yi-Fan Zhao, Ling-Jie Zhou, Ruoxi Zhang, Antony Richardella, Nasim Alem, Joshua Robinson, Moses Chan, Nitin Samarth, and Chao-Xing Liu. The team also includes Jiaqi Cai and Xiaodong Xu at the University of Washington.

This work was primarily supported by the Penn State MRSEC for Nanoscale Science and also partially supported by the National Science Foundation, the Department of Energy, the University of North Texas, and the Gordon and Betty Moore Foundation.

####

For more information, please click here

Contacts:
Gail McCormick
Penn State

Office: 814-863-0901

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Superconductivity

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum Computing

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project