Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthesis of air-stable room-temperature van der Waals magnetic thin flakes

(a) Schematic of the phase transition dominated by HSAB principle (b) High-angle annular dark-field scanning transmission electron microscopy (STEM) cross-sectional image of the reacted t = 14 nm sample. (c) Atomic-resolution energy dispersive spectrometer (EDS) mapping of Pt and Te elements. (d) Raman spectrum of the obtained sample. The inset shows the lattice structure of PtTe2. (e) EDS mapping of the Ge element. (f) Electron energy loss spectroscopy (EELS) spectra of vdW PtTe2Ge1/3 (blue square) and the substituted Cr on the surface (red square). The double peaks around 584 eV, single peaks around 532 eV and 615 eV are features of Cr, O and Te, respectively. Inset shows the low-resolution image. Scale bar: 2 nm. The top bright layer in the image is the protective layer (platinum) for the preparation of STEM samples.
CREDIT
©Science China Press
(a) Schematic of the phase transition dominated by HSAB principle (b) High-angle annular dark-field scanning transmission electron microscopy (STEM) cross-sectional image of the reacted t = 14 nm sample. (c) Atomic-resolution energy dispersive spectrometer (EDS) mapping of Pt and Te elements. (d) Raman spectrum of the obtained sample. The inset shows the lattice structure of PtTe2. (e) EDS mapping of the Ge element. (f) Electron energy loss spectroscopy (EELS) spectra of vdW PtTe2Ge1/3 (blue square) and the substituted Cr on the surface (red square). The double peaks around 584 eV, single peaks around 532 eV and 615 eV are features of Cr, O and Te, respectively. Inset shows the low-resolution image. Scale bar: 2 nm. The top bright layer in the image is the protective layer (platinum) for the preparation of STEM samples. CREDIT ©Science China Press

Abstract:
Since recent discovery, two-dimensional (2D) van der Waals (vdW) magnets have become the hotspot in materials science. 2D magnetism has also become one of the most promising fields in the research of condensed matter research. With various exciting performance, 2D vdW magnets possess important application potential in topology magnetoelectronics, low power spintronics, quantum computing and optical communication.

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes

Beijing, China | Posted on September 30th, 2022

Benefited from layered stacking structure, thin flakes of vdW magnets can be easily exfoliated from crystals and flexibly constructed into heterostructures. Therefore, compared to traditional magnetic thin films, they exhibit superior interfacial effects and novel physical phenomena. However, every coin has two sides, vdW magnets have two serious weaknesses. Their Curie temperature (TC) is generally much lower than room temperature and the thin flakes will be rapidly oxidized in air, which leads to difficulties in both fundamental investigations and practical applications. Therefore, the evaluation of TC and air stability has become one of the research focus of vdW magnetic materials, which is of great significance for their practical applications.

Led by Prof. Feng Pan and Prof. Cheng Song (Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University), the research team analyzes the origin of those weaknesses of vdW magnets and designs an anomalous displacement reaction to synthesize novel vdW magnetic thin flakes which possess both room-temperature TC and high air stability.

The research team puts forward that the easy oxidation of traditional vdW magnetic materials can be explained by Hard-Soft-Acid-Base principle (HSAB) which illustrates the instability between incompatible elements. Meanwhile, the low TC can be enhanced by strong spin-orbit coupling. Accordingly, inducing magnetism by high-density ordered nonmagnetic doping in naturally stable vdW nonmagnetic materials with strong spin-orbit coupling (PtTe2) is a feasible way to realize room-temperature and stable vdW magnets. The problem seems to be solved here. However, based on traditional methods, it is hard to introduce layered uniform doping with high density, tending to form segregated doping or second phases. Inspiration comes from a traditional vdW magnet Cr2Ge2Te6, in which Ge atoms have already been uniformly arranged in Cr-Te vdW lattice. The team consider whether Pt can replace Cr atoms of Cr2Ge2Te6 in the displacement reaction, while the original Ge atoms could be naturally embedded in Pt-Te vdW lattice and induce long-range ordered ferromagnetism. This displacement reaction seems opposite to the order of metal activity (Cr > Pt), but HSAB shows Pt can be more tightly bonded with Te compared to Cr, which can also dominate this reaction.

The experiments start from the fabrication of Cr2Ge2Te6/Pt heterostructure, followed by the annealing process to provide activation energy for the reaction. Satisfactorily, the results are consistent with the theoretical expectation. The structural characterizations demonstrate that in thin samples, Cr atoms are completely substituted by Pt atoms and PtTe2 vdW structure is formed with the layered uniform insertion of Ge atoms. A novel vdW thin flake PtTe2Ge1/3 is obtained. “Although this surprising reaction is different from traditional cognition but still reasonable.” Prof. Song said, “VdW materials always exhibit unexpected phenomena.”

Furtherly, both room-temperature TC and high air stability in PtTe2Ge1/3 are demonstrated. Through the optical and electrical measurements, the above room-temperature ferromagnetism is observed. Based on the first-principle calculations, the ferromagnetism is attributed to the unbalanced Pt-Te orbital hybridization with the embedded Ge atoms. The persistence of magnetism with exposure in air for months demonstrates the high air stability of PtTe2Ge1/3.

“The realization of high air stability in room-temperature vdW ferromagnetic thin flakes is a breakthrough in vdW magnets which would advance both the investigation and application of vdW magnetic materials.” Prof. Pan said, “The idea of displacement reaction could also be enlightening for the researches among different vdW families.”

####

For more information, please click here

Contacts:
Bei Yan
Science China Press


Expert Contacts

Cheng Song
Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Beijing Innovation Center for Future Chips, Tsinghua University


Feng Pan
Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Beijing Innovation Center for Future Chips, Tsinghua University

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

2 Dimensional Materials

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Spintronics

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

“Kagome” metallic crystal adds new spin to electronics October 28th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Quantum Computing

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project