Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthesis of air-stable room-temperature van der Waals magnetic thin flakes

(a) Schematic of the phase transition dominated by HSAB principle (b) High-angle annular dark-field scanning transmission electron microscopy (STEM) cross-sectional image of the reacted t = 14 nm sample. (c) Atomic-resolution energy dispersive spectrometer (EDS) mapping of Pt and Te elements. (d) Raman spectrum of the obtained sample. The inset shows the lattice structure of PtTe2. (e) EDS mapping of the Ge element. (f) Electron energy loss spectroscopy (EELS) spectra of vdW PtTe2Ge1/3 (blue square) and the substituted Cr on the surface (red square). The double peaks around 584 eV, single peaks around 532 eV and 615 eV are features of Cr, O and Te, respectively. Inset shows the low-resolution image. Scale bar: 2 nm. The top bright layer in the image is the protective layer (platinum) for the preparation of STEM samples.
CREDIT
©Science China Press
(a) Schematic of the phase transition dominated by HSAB principle (b) High-angle annular dark-field scanning transmission electron microscopy (STEM) cross-sectional image of the reacted t = 14 nm sample. (c) Atomic-resolution energy dispersive spectrometer (EDS) mapping of Pt and Te elements. (d) Raman spectrum of the obtained sample. The inset shows the lattice structure of PtTe2. (e) EDS mapping of the Ge element. (f) Electron energy loss spectroscopy (EELS) spectra of vdW PtTe2Ge1/3 (blue square) and the substituted Cr on the surface (red square). The double peaks around 584 eV, single peaks around 532 eV and 615 eV are features of Cr, O and Te, respectively. Inset shows the low-resolution image. Scale bar: 2 nm. The top bright layer in the image is the protective layer (platinum) for the preparation of STEM samples. CREDIT ©Science China Press

Abstract:
Since recent discovery, two-dimensional (2D) van der Waals (vdW) magnets have become the hotspot in materials science. 2D magnetism has also become one of the most promising fields in the research of condensed matter research. With various exciting performance, 2D vdW magnets possess important application potential in topology magnetoelectronics, low power spintronics, quantum computing and optical communication.

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes

Beijing, China | Posted on September 30th, 2022

Benefited from layered stacking structure, thin flakes of vdW magnets can be easily exfoliated from crystals and flexibly constructed into heterostructures. Therefore, compared to traditional magnetic thin films, they exhibit superior interfacial effects and novel physical phenomena. However, every coin has two sides, vdW magnets have two serious weaknesses. Their Curie temperature (TC) is generally much lower than room temperature and the thin flakes will be rapidly oxidized in air, which leads to difficulties in both fundamental investigations and practical applications. Therefore, the evaluation of TC and air stability has become one of the research focus of vdW magnetic materials, which is of great significance for their practical applications.

Led by Prof. Feng Pan and Prof. Cheng Song (Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University), the research team analyzes the origin of those weaknesses of vdW magnets and designs an anomalous displacement reaction to synthesize novel vdW magnetic thin flakes which possess both room-temperature TC and high air stability.

The research team puts forward that the easy oxidation of traditional vdW magnetic materials can be explained by Hard-Soft-Acid-Base principle (HSAB) which illustrates the instability between incompatible elements. Meanwhile, the low TC can be enhanced by strong spin-orbit coupling. Accordingly, inducing magnetism by high-density ordered nonmagnetic doping in naturally stable vdW nonmagnetic materials with strong spin-orbit coupling (PtTe2) is a feasible way to realize room-temperature and stable vdW magnets. The problem seems to be solved here. However, based on traditional methods, it is hard to introduce layered uniform doping with high density, tending to form segregated doping or second phases. Inspiration comes from a traditional vdW magnet Cr2Ge2Te6, in which Ge atoms have already been uniformly arranged in Cr-Te vdW lattice. The team consider whether Pt can replace Cr atoms of Cr2Ge2Te6 in the displacement reaction, while the original Ge atoms could be naturally embedded in Pt-Te vdW lattice and induce long-range ordered ferromagnetism. This displacement reaction seems opposite to the order of metal activity (Cr > Pt), but HSAB shows Pt can be more tightly bonded with Te compared to Cr, which can also dominate this reaction.

The experiments start from the fabrication of Cr2Ge2Te6/Pt heterostructure, followed by the annealing process to provide activation energy for the reaction. Satisfactorily, the results are consistent with the theoretical expectation. The structural characterizations demonstrate that in thin samples, Cr atoms are completely substituted by Pt atoms and PtTe2 vdW structure is formed with the layered uniform insertion of Ge atoms. A novel vdW thin flake PtTe2Ge1/3 is obtained. “Although this surprising reaction is different from traditional cognition but still reasonable.” Prof. Song said, “VdW materials always exhibit unexpected phenomena.”

Furtherly, both room-temperature TC and high air stability in PtTe2Ge1/3 are demonstrated. Through the optical and electrical measurements, the above room-temperature ferromagnetism is observed. Based on the first-principle calculations, the ferromagnetism is attributed to the unbalanced Pt-Te orbital hybridization with the embedded Ge atoms. The persistence of magnetism with exposure in air for months demonstrates the high air stability of PtTe2Ge1/3.

“The realization of high air stability in room-temperature vdW ferromagnetic thin flakes is a breakthrough in vdW magnets which would advance both the investigation and application of vdW magnetic materials.” Prof. Pan said, “The idea of displacement reaction could also be enlightening for the researches among different vdW families.”

####

For more information, please click here

Contacts:
Bei Yan
Science China Press


Expert Contacts

Cheng Song
Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Beijing Innovation Center for Future Chips, Tsinghua University


Feng Pan
Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Beijing Innovation Center for Future Chips, Tsinghua University

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

2 Dimensional Materials

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project