Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals

image: The organic layer grown on cuprous oxide nanocube improved CO2 reduction selectivity of Cu species wrapped by it, and also maintained its cubic structure during catalysis. 

Credit: Shoko Kume, Hiroshima University
image: The organic layer grown on cuprous oxide nanocube improved CO2 reduction selectivity of Cu species wrapped by it, and also maintained its cubic structure during catalysis. Credit: Shoko Kume, Hiroshima University

Abstract:
As the need to mitigate climate change accelerates, scientists are trying to find new ways to reduce carbon dioxide emissions. One process, called electrochemical reduction or electrolysis, uses electricity and a catalyst to convert carbon dioxide into organic products that can be used in other ways. Unlike conversion between water and hydrogen, chemical recycling of carbon dioxide can produce various useable products because carbon can develop vast varieties of organic structures.

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals

Hiroshima, Japan | Posted on September 23rd, 2022

One way to achieve electrochemical reduction of carbon dioxide uses very tiny pieces of copper. While bulk copper metal has known to convert carbon dioxide into various organic molecules, these small pieces of copper can further improve catalytic activity not only by the increase of its surface area but also by the unique electronic structure of copper emerged from nanosizing.

In a paper published in Chemical Communications on June 23, researchers explain a process for improving the way the copper nanocubes convert carbon dioxide, by improving their selectivity. Selectivity refers to the ability of a catalyst to produce a desired product over unwanted byproducts.

“Recent developments in carbon dioxide reduction using copper electrocatalysts can convert the gas into hydrocarbons and alcohol, but the selectivity of various copper-related electrocatalysts developed so far is still elusive, because they tend to lose activity through structural reorganization during the catalysis,” said Shoko Kume, associate professor at the Graduate School of Advanced Science and Engineering at Hiroshima University in Japan.

Researchers discovered that this problem can be solved by growing an organic layer on top of the nanocubes. First, a pair of monomers were added to the copper oxide nanocube. These monomers were tethered by the chemistry on copper oxide and an even organic layer grew on the surface of the cubes. This new organic layer helps improve carbon dioxide reduction selectivity, in part because carbon dioxide has poor solubility and the organic layer the researchers produced has hydrophobic properties, meaning it repels excessive water, from which unwanted hydrogen is produced. “The wrapping improved carbon dioxide reduction of the copper beneath this organic layer by suppressing hydrogen evolution, and also maintained the cubic structure throughout the catalyst operation,” said Kume.

Another important factor for improving the quality of the organic layer was the temperature at the time of the growth, with the best results found at room temperature. Under the best conditions, the layer is flat with a thickness of several molecules. Even the thin layer readily permeates carbon dioxide and allows the wrapped copper to undergo electroreduction, protecting the metals and helping the cubes retain their shape.

Currently, copper nanocubes are not widely adopted as a method for carbon dioxide reduction because they are unstable and do not have the level of selectivity needed to effectively recycle the carbon dioxide into other chemical products. The findings of this paper highlight a new method of creating an electrocatalyst using copper nanocubes that can solve some of these problems. Researchers also point out, looking ahead, that the method can be modified to control both the selectivity and improve how the catalysts work.

“Our current method can introduce a vast variety of organic structures within the layer, which can be involved in the carbon dioxide reduction process to control its selectivity and efficiency,” said Kume. “It can also be used to control the dynamic behavior of metal species during catalysis, which can develop catalysts with long life and a tolerance for impurities.”

###

Other contributors include Takuma Umeda, Takeshi Kurome, Ayumu Sakamoto, Kazuyuki Kubo, and Tsutomu Mizuta of the Department of Chemistry at the Graduate School of Advanced Science and Engineering at Hiroshima University and Seung Uk Son of the Department of Chemistry at Sungkyunkwan University.

The Japan Society for Promotion of Science supported this research.

####

About Hiroshima University
Since its foundation in 1949, Hiroshima University has striven to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools for undergraduate level and 4 graduate schools, ranging from natural sciences to humanities and social sciences, the university has grown into one of the most distinguished comprehensive research universities in Japan.

For more information, please click here

Contacts:
Norifumi Miyokawa
Hiroshima University

Office: 082-424-4427

Copyright © Hiroshima University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal: Chemical Communications

Related News Press

Chemistry

Porous platinum matrix shows promise as a new actuator material November 17th, 2023

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Materials/Metamaterials/Magnetoresistance

Porous platinum matrix shows promise as a new actuator material November 17th, 2023

A new kind of magnetism November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Environment

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Energy

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project