Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electrically driven single microwire-based single-mode microlaser

a, Schematic showing the home-built micro-PL measuring equipment, in which the single ZnO:Ga MW covered by large size PtNPs was pumped by a 325 nm fs-amplified laser. b, SEM image of a single ZnO:Ga MW covered by PtNPs. Inset: Enlarged SEM image of the PtNPs, which are deposited on the side surface of ZnO:Ga MW. The diameter of the deposited PtNPs is extracted to about 130 nm. c, PL emission spectra of an individual PtNPs@ZnO:Ga MW at different pump power densities below and above the threshold. d, Integrated PL intensity and spectral linewidth of the lasing peak as a function of pump fluence, yielding a threshold fluence of Pth ~ 66.2 μJ·cm⁻². e, Magnified PL spectrum of the 388.5 nm lasing mode. The dots and line are experimental data and Lorentz function fitting curve, respectively. The spectral FWHM of the lasing peak is extracted to about 0.16 nm, and the Q-factor value is calculated to approximately 2430.
CREDIT
by Xiangbo Zhou, Mingming Jiang, Kai Xu, Maosheng Liu, Shulin Sha, Shuiyan Cao, Caixia Kan, and Da Ning Shi
a, Schematic showing the home-built micro-PL measuring equipment, in which the single ZnO:Ga MW covered by large size PtNPs was pumped by a 325 nm fs-amplified laser. b, SEM image of a single ZnO:Ga MW covered by PtNPs. Inset: Enlarged SEM image of the PtNPs, which are deposited on the side surface of ZnO:Ga MW. The diameter of the deposited PtNPs is extracted to about 130 nm. c, PL emission spectra of an individual PtNPs@ZnO:Ga MW at different pump power densities below and above the threshold. d, Integrated PL intensity and spectral linewidth of the lasing peak as a function of pump fluence, yielding a threshold fluence of Pth ~ 66.2 μJ·cm⁻². e, Magnified PL spectrum of the 388.5 nm lasing mode. The dots and line are experimental data and Lorentz function fitting curve, respectively. The spectral FWHM of the lasing peak is extracted to about 0.16 nm, and the Q-factor value is calculated to approximately 2430. CREDIT by Xiangbo Zhou, Mingming Jiang, Kai Xu, Maosheng Liu, Shulin Sha, Shuiyan Cao, Caixia Kan, and Da Ning Shi

Abstract:
Owing to their coherent light-emission properties with high brightness and narrow spectral line width, the most promising lasers of deterministic single photons and entangled photons operated in multi-mode are easier to be obtained based on as-grown semiconductor wire-like structures. Nevertheless, multiple frequencies laser output will lead to time-domain pulse broadening and false signaling because of group velocity dispersion, which strongly limited their applications. Further, in the procedure of laser miniaturization, the monochromaticity of the lasing output becomes highly desirable because of less mode competition, better beam quality, and higher stability. During recent decades, effective mode manipulation and selection strategies have been intensively researched to achieve single-mode operation with both spatial and spectral controllability—a requirement for enhanced laser performance with higher monochromaticity, less mode competition, and better beam quality. Obtaining single-mode operation depends on sufficiently modulated gain and loss, but such modulation is impeded by factors such as inhomogeneous gain saturation. Several approaches have been developed that make use of an additional cavity for the intracavity feedback, distributed feedback gratings, an enlarged free spectral range through mode size reduction, or spatially varied optical pumping. However, these experimental schemes are applicable to specific configurations; what is desired is a general design concept with flexible control of cavity modes.

Electrically driven single microwire-based single-mode microlaser

Changchun, China | Posted on July 8th, 2022

As previously reported that, the realization of electrically driven lasing actions has been achieved, but exhibited much more lasing modes, lower laser quality, higher threshold, higher background of spontaneous radiation and so on. Therefore, the expected search for a kind of compact and suitable approach for single-mode lasing operation with the merits of easy manipulation and engineering lasing modes without damage to the optical cavity has already become a problem, which needing urgent resolution.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Daning Shi from Nanjing University of Aeronautics and Astronautics, and co-workers have proposed a new concept of "superabsorption", which to some extent solves the difficulty of realizing single-mode laser in microscale microcavity. Based on the superabsorption, they designed an MW/Pt/MgO/p-GaN heterojunction, which has excellent lasing performance with single-mode operation. More interestingly, large-size PtNPs working as superabsorbers can lock a single mode of the multimode lasing not only upon pulsed excitation, but also upon electrical-excitation. The reported method and technique will open new avenues for design and construct single-mode microlasers, specifically for developing ultralow-threshold lasers based on commonly-used one-dimensional wired micro- and nanostructures.

“In the laser architecture, the inserted MgO nanofilm can function as a dielectric layer to engineer the band alignment of the ZnO:Ga/GaN heterojunction, lowing the electron leakage, yielding the electron-hole recombination in the single ZnO:Ga MW active media; while the insertion of Pt buffer nanolayer can facilitate the current injection and optimize the junction quality. Thus, the incorporation of Pt/MgO buffer layers can integrate the depletion layer, laser medium and microresonator in the single ZnO:Ga MW, realizing multimode lasing actions in the ultraviolet region.”

“By manipulating the cavity resonant modes, the incorporation of PtNPs, potentially showing superabsorber behavior, can lock a desired lasing mode in the higher energy side of multimode lasing in the as-constructed single bare MW-based microlaser. The intriguing properties of PtNPs were also characterized experimentally and theoretically, illustrating that the lasing mode selection and competition of a single ZnO:Ga MW can be modulated by incorporating PtNPs with desired sizes upon optical pumping. The achievement of single-mode microlasers with high repeatability and controllability was also examined. ”

“The presented technique can supply a brand-new approach to design and construct single-mode microlasers, specifically for developing ultralow-threshold lasers based on commonly used one-dimensional wire micro/nanostructures.” the scientists forecast.

####

For more information, please click here

Contacts:
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851

Expert Contact

Mingming Jiang
University of Aeronautics and Astronautics, China

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanofabrication

New chip opens door to AI computing at light speed February 16th, 2024

Researchers develop technique to synthesize water-soluble alloy nanoclusters January 12th, 2024

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project