Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers

On the left, a strong d-p direct exchange magnetic interaction exists between Cr cations and pyrazine radicals. In the center, the Curie temperature Tc is displayed. On the right shows that the Cr(pyrazine)2 monolayer is an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction. Photo credit: Xiangyang Li and Xingxing Li.

CREDIT
©Science China Press
On the left, a strong d-p direct exchange magnetic interaction exists between Cr cations and pyrazine radicals. In the center, the Curie temperature Tc is displayed. On the right shows that the Cr(pyrazine)2 monolayer is an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction. Photo credit: Xiangyang Li and Xingxing Li. CREDIT ©Science China Press

Abstract:
Recently, SCIENCE CHINA Chemistry published online the important research results by Prof. Jinlong Yang’s research group from University of Science and Technology of China in the field of two-dimensional magnetic semiconductors.

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers

Beijing, China | Posted on December 3rd, 2021

Two dimensional (2D) magnetic semiconductors, integrating semiconductivity, ferromagnetism and low dimensionality, serve as the cornerstone for high-speed nanospintronic devices. However, the practical applications of nowadays 2D magnetic semiconductors face two key problems: the rather low magnetic Curie temperature compared to room temperature, and the lack of a simple and efficient method to control the carrier’s spin polarization direction. Thus, exploring 2D magnetic semiconductors with room temperature magnetic ordering and controllable spin polarization is highly desirable.

On the one hand, in order to raise the magnetic Curie temperature to room temperature, Prof. Jinlong Yang’s research group has previously proposed to introduce a type of strong d-p direct ferrimagnetic exchange interaction between transition metal cations and magnetic organic linker radical anions (see below, left image) in rectangular 2D organometallic lattices such as Cr(pentalene)2 and Cr(DPP)2 [J. Am. Chem. Soc. 2019, 141, 109; J. Phys. Chem. Lett. 2019, 10, 2439]. However, up to now, their experimental realization still keeps as an open question. Also, the control of spin polarization has not been achieved therein.

On the other hand, in order to realize direct control of carrier’s spin polarization simply by electrical gating, Prof. Jinlong Yang’s research group has previously proposed a novel class of spintronic materials named bipolar magnetic semiconductors (BMS) [Nanoscale 2012, 4, 5680; Natl. Sci. Rev. 2016, 3, 365], which can provide completely spin polarized currents with the spin polarization direction reversible by altering the polarity of applied voltage gate. It is worth mentioning that the most promising 2D material with BMS function is our designed 2D MnPSe3 nanosheets, where spin-polarization directions are opposite for electron and hole doping, and can be controlled by applying an external voltage gate. [J. Am. Chem. Soc. 2014, 136, 11065]. However, the ground magnetic state of 2D MnPSe3 is antiferromagnetic and should be doped to become a ferromagnetic BMS. Moreover, the magnetic Curie temperature under doping is low (up to 206 K), far from practical application.

Here, by marriage of our recently proposed d-p direct ferrimagnetic exchange scheme and the concept of bipolar magnetic semiconductors (BMS), Prof. Jinlong Yang’s research group has made a significant step forward and realized a 2D intrinsic BMS material with room temperature ferrimagnetic ordering and electrically controllable spin polarization by exfoliating the recently synthesized organometallic layered crystal Li0.7[Cr(pyz)2]Cl0.7·0.25(THF) (pyz = pyrazine, THF = tetrahydrofuran) [Science 2020, 370, 587]. The feasibility of exfoliation is confirmed by the rather low exfoliation energy of 0.27 J/m2, even smaller than that of graphite. In exfoliated Cr(pyz)2 monolayer, each pyrazine ring grabs one electron from the Cr atom to become a radical anion, then a strong d-p direct exchange magnetic interaction emerges between Cr cations and pyrazine radicals, resulting in room temperature ferrimagnetism with a Curie temperature of 342 K (see below, center image). Moreover, Cr(pyz)2 monolayer is revealed to be an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction (see below, right image).

The significance of the designed bipolar magnetic semiconductor (BMS), i.e. Cr(pyz)2 monolayer sheet, is summarized as follows:

1. Raising the magnetic Curie temperature of bipolar magnetic semiconductor (BMS) to room temperature.

2. Achieving direct control of carrier’s spin polarization simply by electrical gating.

3. Easy preparation by mechanical exfoliation.

Such kind of organometallic ferrimagnetic semiconductors not only provide a new opportunity to achieve high-Tc 2D magnetic semiconductors, but also has great potential in the design of electrically controlled nanospintronic devices.

####

For more information, please click here

Contacts:
Bei Yan
Science China Press

Office: 86-10-64015905
Expert Contacts

Xiaojun Wu
University of Science and Technology of China

Xingxing Li
University of Science and Technology of China

Jinlong Yang
University of Science and Technology of China

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

2 Dimensional Materials

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Two types of ultrafast mode-locking operations generation from an Er-doped fiber laser based on germanene nanosheets July 21st, 2023

Understanding the diverse industrial applications of materials science: Materials Science A Field of Diverse Industrial Applications July 21st, 2023

Magnetism/Magnons

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project