Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers

On the left, a strong d-p direct exchange magnetic interaction exists between Cr cations and pyrazine radicals. In the center, the Curie temperature Tc is displayed. On the right shows that the Cr(pyrazine)2 monolayer is an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction. Photo credit: Xiangyang Li and Xingxing Li.

CREDIT
©Science China Press
On the left, a strong d-p direct exchange magnetic interaction exists between Cr cations and pyrazine radicals. In the center, the Curie temperature Tc is displayed. On the right shows that the Cr(pyrazine)2 monolayer is an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction. Photo credit: Xiangyang Li and Xingxing Li. CREDIT ©Science China Press

Abstract:
Recently, SCIENCE CHINA Chemistry published online the important research results by Prof. Jinlong Yang’s research group from University of Science and Technology of China in the field of two-dimensional magnetic semiconductors.

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers

Beijing, China | Posted on December 3rd, 2021

Two dimensional (2D) magnetic semiconductors, integrating semiconductivity, ferromagnetism and low dimensionality, serve as the cornerstone for high-speed nanospintronic devices. However, the practical applications of nowadays 2D magnetic semiconductors face two key problems: the rather low magnetic Curie temperature compared to room temperature, and the lack of a simple and efficient method to control the carrier’s spin polarization direction. Thus, exploring 2D magnetic semiconductors with room temperature magnetic ordering and controllable spin polarization is highly desirable.

On the one hand, in order to raise the magnetic Curie temperature to room temperature, Prof. Jinlong Yang’s research group has previously proposed to introduce a type of strong d-p direct ferrimagnetic exchange interaction between transition metal cations and magnetic organic linker radical anions (see below, left image) in rectangular 2D organometallic lattices such as Cr(pentalene)2 and Cr(DPP)2 [J. Am. Chem. Soc. 2019, 141, 109; J. Phys. Chem. Lett. 2019, 10, 2439]. However, up to now, their experimental realization still keeps as an open question. Also, the control of spin polarization has not been achieved therein.

On the other hand, in order to realize direct control of carrier’s spin polarization simply by electrical gating, Prof. Jinlong Yang’s research group has previously proposed a novel class of spintronic materials named bipolar magnetic semiconductors (BMS) [Nanoscale 2012, 4, 5680; Natl. Sci. Rev. 2016, 3, 365], which can provide completely spin polarized currents with the spin polarization direction reversible by altering the polarity of applied voltage gate. It is worth mentioning that the most promising 2D material with BMS function is our designed 2D MnPSe3 nanosheets, where spin-polarization directions are opposite for electron and hole doping, and can be controlled by applying an external voltage gate. [J. Am. Chem. Soc. 2014, 136, 11065]. However, the ground magnetic state of 2D MnPSe3 is antiferromagnetic and should be doped to become a ferromagnetic BMS. Moreover, the magnetic Curie temperature under doping is low (up to 206 K), far from practical application.

Here, by marriage of our recently proposed d-p direct ferrimagnetic exchange scheme and the concept of bipolar magnetic semiconductors (BMS), Prof. Jinlong Yang’s research group has made a significant step forward and realized a 2D intrinsic BMS material with room temperature ferrimagnetic ordering and electrically controllable spin polarization by exfoliating the recently synthesized organometallic layered crystal Li0.7[Cr(pyz)2]Cl0.7·0.25(THF) (pyz = pyrazine, THF = tetrahydrofuran) [Science 2020, 370, 587]. The feasibility of exfoliation is confirmed by the rather low exfoliation energy of 0.27 J/m2, even smaller than that of graphite. In exfoliated Cr(pyz)2 monolayer, each pyrazine ring grabs one electron from the Cr atom to become a radical anion, then a strong d-p direct exchange magnetic interaction emerges between Cr cations and pyrazine radicals, resulting in room temperature ferrimagnetism with a Curie temperature of 342 K (see below, center image). Moreover, Cr(pyz)2 monolayer is revealed to be an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction (see below, right image).

The significance of the designed bipolar magnetic semiconductor (BMS), i.e. Cr(pyz)2 monolayer sheet, is summarized as follows:

1. Raising the magnetic Curie temperature of bipolar magnetic semiconductor (BMS) to room temperature.

2. Achieving direct control of carrier’s spin polarization simply by electrical gating.

3. Easy preparation by mechanical exfoliation.

Such kind of organometallic ferrimagnetic semiconductors not only provide a new opportunity to achieve high-Tc 2D magnetic semiconductors, but also has great potential in the design of electrically controlled nanospintronic devices.

####

For more information, please click here

Contacts:
Bei Yan
Science China Press

Office: 86-10-64015905
Expert Contacts

Xiaojun Wu
University of Science and Technology of China

Xingxing Li
University of Science and Technology of China

Jinlong Yang
University of Science and Technology of China

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

2 Dimensional Materials

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project