Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Perovskite solar cells: Interfacial loss mechanisms revealed

The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence.

CREDIT
HZB
The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence. CREDIT HZB

Abstract:
Losses occur in all solar cells. One cause is the recombination of charge carriers at the interfaces. Intermediate layers at such interfaces can reduce these losses through so-called passivation. Self-assembled monolayers (SAMs) with a carbazole core are particularly well suited for the passivation of semiconductor surfaces made of perovskite materials. A team led by HZB physicist Prof. Steve Albrecht together with a group from Kaunas Technical University in Lithuania demonstrated this some time ago, developing a silicon-perovskite-based tandem solar cell with a record efficiency of over 29 %.

Perovskite solar cells: Interfacial loss mechanisms revealed

Berlin, Germany | Posted on August 20th, 2021

Now, for the first time, a team at HZB has analysed the charge carrier dynamics at the perovskite/SAM-modified ITO interface in more detail. From time-resolved surface photovoltage measurements, they were able to extract the density of "electron traps" at the interface as well as the hole transfer rates using a minimalist kinetic model. Complementary information was provided by measuring the time-resolved photoluminescence.

"We were able to determine differences in passivation quality, selectivity and hole transfer rates depending on the structure of the SAM, and demonstrate how the time-resolved surface photovoltage and photoluminescence techniques are complementary," explains Dr. Igal Levine, postdoc at HZB and first author of the paper. Time-resolved surface photovoltage proves to be a relatively simple technique for quantifying charge extraction at buried interfaces that could significantly facilitate the design of ideal charge-selective contacts.

####

For more information, please click here

Contacts:
Antonia Roetger

Office: 0049-308-062-43733
Expert Contact

Dr. Igal Levine

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Perovskites

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project