Home > Press > Observation charge accumulation at nanocavity on plasmonic photocatalyst
![]() |
SCHEMATIC ILLUSTRATION OF AU DIMERS/TIO2 TO SIMULATE THE PHOTOSYSTEM II AND PLASMONIC CHARGE ACCUMULATION AT NANOCAVITY FOR WATER OXIDATION. CREDIT ©Science China Press |
Abstract:
Strong interaction between plasmonic nanoparticles and free-space light induced the evanescently confined modes on the nanoparticle surfaces, which holds great promise in plasmonic nanophotonic technologies. Plasmonic nanoparticle with the capability of generating energetic charges makes it being widely exploited in the field of photocatalysis, providing a new paradigm for conversion renewable sunlight to useful fuels and high-value chemicals.
Plasmon metal nanoparticles/semiconductors with Schottky barrier at interface are well-received photocatalysts that can achieve charge spatial separation to prolong the lifetime of separating charge for matching the timescale of surface chemical reactions. The key question in the plasmonic photocatalysis is how plasmonic charges can be effectively separated to improve charge density at catalytic sites, which is critical to multi-hole/electron-driven redox reactions, such as water oxidation.
In natural photosynthesis, hundreds of functional pigments are distributed surrounding a reaction center of photosystem II to continuously supply photogenerated charges by increasing the light absorption flux. However, due to the lack of microscopic details of charge accumulation sites in artificial photosynthesis, there is less report for mimicking natural photosynthesis to extract sufficient hot holes in plasmonic photocatalysts for efficient oxygen evolution.
In a new research article published in the Beijing-based National Science Review, inspired by natural photosynthesis, Can Li and Fengtao Fan research group from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, present an elegant approach to simultaneously address the critical problems of light harvesting and charge density at catalytic sites of plasmonic photocatalyst. The group constructed Au nanoparticle dimers on TiO2 as optical antenna, and found charge accumulation at nanocavity of Au dimers/TiO2 photocatalyst mediated by surface plasmon resonance coupling. Combining experimentally measured surface photovoltage with theoretical calculations, the local density of hot hole was demonstrated to be related to the square of local near-field intensity. Using four-electron involved water oxidation reaction as a probe reaction, the performance of Au dimer/TiO2 photoanode can be improved by one order of magnitude compared to Au NPs/TiO2 photoanode.
The current work presents a previously unrecognized effect on charge accumulation at catalytic sites of plasmonic photocatalysts. Furthermore, it should encourage others to explore the significance of plasmonic hot spot to generate more charges - not only for photodetections, but also for photocatalysis associated with multiple charges transfer processes.
###
This research received funding from the National Natural Science Foundation of China, the Chinese Academy of Sciences Interdisciplinary Innovation Team, Dalian Institute of Chemical Physics Innovation Foundation, and the Strategic Priority Research Program and Equipment Development Project of the Chinese Academy of Sciences.
####
About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.
For more information, please click here
Contacts:
Yan Bei
Copyright © Science China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Chemistry
USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023
Plasmonics
A new dimension in magnetism and superconductivity launched November 5th, 2021
Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Govt.-Legislation/Regulation/Funding/Policy
Quantum powers researchers to see the unseen September 8th, 2023
Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |