Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High-sensitivity atomic force microscopy opens up for photosensitive materials

Experimental setup used for the developed magnetic excitation system. (a) Cross-sectional view of the sample holder. (b) Magnified view of the cantilever free end with a magnetic bead and an EBD tip.

CREDIT
Scientific Reports
Experimental setup used for the developed magnetic excitation system. (a) Cross-sectional view of the sample holder. (b) Magnified view of the cantilever free end with a magnetic bead and an EBD tip. CREDIT Scientific Reports

Abstract:
Atomic force microscopy (AFM) brought the atomic scale imaging resolution of scanning tunnelling microscopy, a technique that won the Nobel Prize in Physics, to non-conducting surfaces. However, imitations remain when trying to use the technique at its most sensitive with photosensitive samples in liquids. Now researchers at Kanazawa University show how to overcome these constraints, by driving a cantilever a few micrometres in size at megahertz frequencies with stability and control in liquid and without potentially exposing the sample to light.

High-sensitivity atomic force microscopy opens up for photosensitive materials

Kakuma, South Korea | Posted on August 7th, 2020

Atomic force microscopes monitor the forces at play between a surface and a tip attached to a cantilever to extract information about the surface topography and composition. By oscillating the cantilever over the surface instead of dragging it the strength of interactions with the cantilever and tip can be inferred from changes in the oscillation amplitude or resonant frequency without damaging the surface.

Usually a piezo actuator generates an acoustic wave that drives the cantilever to oscillate at its resonance frequency. However, this approach is prone to spurious contributions to the resonance from the components of the device linking the actuator to the cantilever. The impact of these effects is greater for the most sensitive cantilevers, which are small and have high megahertz resonance frequencies. Alternatives are photothermal, electrostatic or electrostrictive cantilever excitation, but if the material under study is photosensitive or kept in an electrochemically active liquid, these too have drawbacks. Instead Takeshi Fukuma and colleagues at Kanazawa University followed up with a magnetic excitation approach.

They investigated how to implement their approach with three makes of cantilever, which they customized by adding a magnetic bead decorated with a carbon nanoscale tip. They then applied an alternating magnetic field by feeding an a.c. current into a tiny solenoid made from a 0.2 mm diameter wire wound around a 3 mm diameter cylinder.

Although other groups have previously demonstrated dynamic AFM driven by magnetic excitation, the approach once again runs into problems for small cantilevers. The feedback loop to handle the circuit latency and compensate for the frequency-dependent impedance so that the device covers a wide frequency bandwidth does not work so well at high frequencies. Instead the researchers designed an open loop differential circuit that feeds in a complex coil voltage proportional to the frequency and input voltage.

To demonstrate the applicability of their approach they measured cantilever resonance curves and the atomic scale topography of a mica surface in phosphate buffered saline solution with various customized cantilevers including those with a megahertz-order resonance frequency.

[Background]

Atomic force microscopy

The first image using AFM was reported by Gerd Binnig, Calvin Quate and Christoph Gerber in 1986, five years after the scanning tunnelling microscope. The technique is capable of atomic scale resolution and generates images by measuring the sum strength of a number of forces at play between tip and sample, including van der Waals and electrostatic.

AFM uses a cantilever with a tiny tip attached at the end. For static AFM the tip is dragged over the surface and the cantilever deflection is measured or, the cantilever height is adjusted to maintain a constant deflection. In dynamic AFM, where the cantilever oscillates at its resonance frequency and taps the surface with the tip, contact between the tip and surface is causing less damage to the sample. It is capable of high sensitivity imaging without making contact with the surface at all in non-contact mode, by monitoring the impact of interactions with the surface on the amplitude and frequency of the cantilever oscillations.

Besides piezo actuated and photothermal cantilever excitation electrostatic and electrostrictive interactions can be used by applying a bias voltage between tip and surface or both sides of a cantilever. However, in many of the liquids used to house samples, this can cause uncontrolled chemical reactions.

Closed loop versus open loop with differentiation circuits

When using magnetic fields to excite oscillations in the cantilever, the circuit supplying current to the solenoid coil needs to maintain a constant current amplitude. However, the impedance of the circuit increases with frequency, so that a higher voltage signal is needed to maintain a constant current amplitude. This is usually achieved with a feedback loop, which converts the coil current to a voltage and compares it with the input voltage. However, this feedback loop becomes unstable at megahertz frequencies.

In the open-loop circuit used instead, the input voltage is fed into a differentiation circuit that returns a complex coil voltage that is proportional to the input voltage and the frequency (Vcoil = iωVin, where Vcoil is the coil voltage, Vin is the input voltage and ω is the frequency.) This way the coil voltage automatically scales with the frequency, compensating for the frequency-dependent impedance changes.

####

For more information, please click here

Contacts:
Hiroe Yoneda

81-762-344-550

Copyright © Kanazawa University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Imaging

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Possible Futures

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Tools

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

A novel nitrogen-doped dual-emission carbon dots as an effective fluorescent probe for ratiometric detection dopamine June 1st, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project