Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum simulation: Particle behavior near the event horizon of block hole

(a) The schematic of mapping the behavior of fermion pair into a photonic lattice. (b) The designed bi-layer waveguide lattice and the corresponding dispersion relation. (c) The cross-section profile of the fabricated lattices. (d) The imagined output probability distribution of single-photon wave packet splitting to two parts and moving in opposite direction. (e) The output probability distributions with different excited positions in the same lattice. (f) The separation distance increases with the excited position linearly.

CREDIT
©Science China Press
(a) The schematic of mapping the behavior of fermion pair into a photonic lattice. (b) The designed bi-layer waveguide lattice and the corresponding dispersion relation. (c) The cross-section profile of the fabricated lattices. (d) The imagined output probability distribution of single-photon wave packet splitting to two parts and moving in opposite direction. (e) The output probability distributions with different excited positions in the same lattice. (f) The separation distance increases with the excited position linearly. CREDIT ©Science China Press

Abstract:
The vast universe can always arise people's infinite imagination and yearning. Black hole, as one of the most attractive heavenly bodies in the universe, are waiting to be explored and studied. However, due to the limitations of technology, human is still unable to go into the depths of universe, let alone reach the vicinity of a black hole.

Quantum simulation: Particle behavior near the event horizon of block hole

Beijing, China | Posted on July 16th, 2020

Fortunately, based on the equivalence between the metric of curved space-time in general relativity and the electromagnetic parameters in electromagnetic materials, the physical scientist has developed the method of transformation optics to simulate the curved space-time of gravitational field. Now, the scientist is able to study and demonstrate the evolution of particles in curved space-time experimentally. However, up to now, these simulations are limited either in classical regime or in flat space whereas quantum simulation related with general relativity is rarely involved. In the quantum field related with the gravitational effect, there are many striking phenomena, such as Hawking radiation.

Recently, Yao Wang and Xianmin Jin from Shanghai Jiao Tong University and Chong Sheng and Hui Liu from the Nanjing University made an exciting progress in observing particle behavior near the event horizon of block hole.

Based on femtosecond laser direct write technology, the waveguide on-site energy and the coupling between waveguides can be well controlled. Inspired by the concept of transformation optics, the team successfully constructed a one-dimensional artificial black hole using a single-layer non-uniform-coupling photonic waveguide lattice. Comparing to linear time evolution in the flat space, the dynamic behavior of single-photon wave packets near the horizon of a black hole accelerates exponentially, and its exponential index depends on the curvature of the black hole.

The team further designed the two-layer photonic waveguide lattice and experimentally observed the acceleration, generation, and evolution of fermion pairs near the event horizon of the black hole: a single-photon packet with positive energy successfully escaped from the black hole, while a single-photon packet with negative energy was captured. The result, which deviates from the intuition that photons are always trapped by black holes, is found well analogue to Hawking radiation which completely origins from quantum effects associated with gravitational effects. Due to vacuum fluctuations, particle-antiparticle pairs are generated near the event horizon of the black hole. Particles with negative energy fall into the black hole, while particles with negative energy escape. This causes the black hole to lose mass, and it would appear that the black hole has just emitted a particle.

Finally, the team think that higher-dimensional curved space-time can be constructed based on the experimental platform. For example, a two-dimensional waveguide array can be used to simulate three-dimensional space-time, and a two-dimensional waveguide array with photon polarization or frequency can be used to simulate four-dimensional space-time. Furthermore, due to the propagation direction plays the role as the time in our experimental platform, dynamics metric can also be emulated based on this experimental platform, such as FRW metric, a model describing cosmic expansion as time evolution, and gravitational wave, which is the ripple of spacetime.

####

For more information, please click here

Contacts:
Xian-Min Jin

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project