Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents

Abstract:
Researchers in the ERATO Saitoh Spin Quantum Rectification Project in the JST Strategic Basic Research Programs have elucidated the mechanism of the hydrodynamic power generation using spin currents(1) in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents

Tokyo, Japan | Posted on July 3rd, 2020

In a microchannel, the flow takes on a state referred to as laminar flow (2), where a micro-vortex-like liquid motion is distributed widely and smoothly throughout the channel. This leads to properties that are more suitable to miniaturization, and an increase in power generation efficiency. Group leader Mamoru Matsuo, et al., predicted the basic theory of fluid power generation using spin currents in 2017, and in this present study, the researchers experimentally demonstrate the fluid power generation phenomenon in the laminar flow region. As a result of experiments, they confirm that in the laminar flow region, energy conversion efficiency was increased by approximately 100,000 times.

The characteristics of the spin fluid power generation phenomenon in laminar flows that they elucidate in this research are that an electromotive force proportional to flow velocity can be obtained, and that conversion efficiency increases as flow size decreases. Also, whereas hydroelectric power generation (also known as fluid power generation) and magnetohydrodynamic power generation(3) require additional equipment such as turbines and coils, the phenomenon in the research requires almost no additional equipment, both inside and outside of the flow channel. Due to these characteristics, application to spintronics-based nanofluidic devices such as liquid metal flow cooling mechanisms in fast breeder reactors or semiconductor devices, as well as application to flowmeters that electrically measure micro-flows, can be hoped for.

(1) Spin current

The flow of spin angular momentum. For example, electrons have a charge (an electrical degree of freedom) and a spin angular momentum (a magnetic degree of freedom), where the flow of the former is called an electric current and the flow of the latter is called a spin current.

(2) Laminar flow

Flow within a channel is characterized primarily by flow-velocity, size and viscosity. In a low-velocity flow in a small-sized channel, viscosity dominates, and the fluid will flow regularly, and in layers, along the channel axis. This is referred to as laminar flow.

(3) Magnetohydrodynamic power generation

When a charged particle moves in a magnetic field, it is subjected to a force (Lorentz force) that is perpendicular to both the particle's direction of motion and the direction of the magnetic field. Particles with charges of the same polarity (positive or negative) are subjected to a force in the same direction, and move in one direction. As a result, electric charge accumulates at the destination of the particles' movement. Magnetohydrodynamic power generation is a power-generation method that uses the potential difference (electromotive force) generated from this accumulation.

This research was conducted under the ERATO Saitoh Spin Quantum Rectification Project of the JST Strategic Basic Research Programs. The members of the project are as follows: Research Director, Eiji Saitoh (Professor, University of Tokyo), Group leader, Sadamichi Maekawa (senior researcher at RIKEN), Group leader, Mamoru Matsuo (former deputy chief researcher at the Japan Atomic Energy Agency, currently associate professor at the University of Chinese Academy of Sciences), Vice Group leader, Hiroyuki Chudo (deputy chief researcher at the Japan Atomic Energy Agency), Research Supporter, Ryo Takahashi (former postdoctoral researcher at the Japan Atomic Energy Agency, currently assistant professor at Ochanomizu University).

####

For more information, please click here

Contacts:
Eiji Saitoh

81-358-416-505

Copyright © Japan Science and Technology Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Microfluidics/Nanofluidics

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project