Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two quantum cheshire cats exchange grins

Figure 1: Schematic illustration and design of experiments (Image by LI Chuanfeng et al.)
Figure 1: Schematic illustration and design of experiments (Image by LI Chuanfeng et al.)

Abstract:
Prof. LI Chuanfeng, XU Jinshi, and XU Xiaoye from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), collaborating with Prof. CHEN Jingling from Nankai University, realized the non-contacing exchange of the polarization of two photons, revealing the unique quantum characteristics of the "Quantum Cheshire Cat".

Two quantum cheshire cats exchange grins

Hefei, P.R.China | Posted on June 19th, 2020

The study, published in Nature Communications, deepens the understanding of the fundamental problem of physics, "what is physical reality."

In classical world, an object should carry all of its physical properties. However, in quantum world, a quantum object may not act in such a manner - it can temporarily leave some of its physical properties where it never appears. This phenomenon is first proposed in 2013 by Yakir Aharonov, which is known as the quantum Cheshire cat effect. Cheshire Cat is a grinning cat in the fairy tale "Alice in Wonderland". It can disappear, but its grin is still hanging in the air.

In the next few years, experimental physicists observed the separation of the particle properties from the particles in the neutron and photon interference experiments. Scientists soon realized that the results of these experiments could be explained by the classic interference theory. To show the unique quantum effects of "Quantum Cheshire Cat", however, more complicated experiments were needed.

Prof. LI's group, for the first time, used the two-photon system to demonstrate the unique quantum effect of two "quantum Cheshire Cats" exchanging grins. Weak values are required to characterize the location of Cheshire cat and its grin in experiments. However the extraction of weak values in multi-body quantum systems is a big problem.

In this study, scientists proved that the traditional weak measurement method can be bypassed by applying a perturbation to the system. The weak value can be obtained directly by using the inherent relationship between the system detection probability and the strength of the perturbation.

They prepared a two-photon hyper-entangled state, that is, the polarization and path degrees of freedom of the two photons are respectively in the maximum entangled state but there are no correlations between the two degrees of freedom. Then imaginary time evolution introduces perturbation to obtain the weak value of path and polarization of the photon.

Through these weak values, scientists observed that every photon and its polarization are separated, and finally the polarization of the other photon is obtained. The non-contacting grin exchange of the two "quantum Cheshire cats" is realized.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Physics

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project