Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials

MIT researchers have discovered a phenomenon that could be harnessed to control the movement of tiny particles floating in suspension. This approach, which requires simply applying an external electrical field, may ultimately lead to new ways of performing certain industrial or medical processes that require separation of tiny suspended materials.

Courtesy of the researchers
MIT researchers have discovered a phenomenon that could be harnessed to control the movement of tiny particles floating in suspension. This approach, which requires simply applying an external electrical field, may ultimately lead to new ways of performing certain industrial or medical processes that require separation of tiny suspended materials. Courtesy of the researchers

Abstract:
MIT researchers have discovered a phenomenon that could be harnessed to control the movement of tiny particles floating in suspension. This approach, which requires simply applying an external electric field, may ultimately lead to new ways of performing certain industrial or medical processes that require separation of tiny suspended materials.

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials

Cambridge, MA | Posted on May 26th, 2020

The findings are based on an electrokinetic version of the phenomenon that gives curveballs their curve, known as the Magnus effect. Zachary Sherman PhD ’19, who is now a postdoc at the University of Texas at Austin, and MIT professor of chemical engineering James Swan describe the new phenomenon in a paper published in the journal Physical Review Letters.

The Magnus effect causes a spinning object to be pulled in a direction perpendicular to its motion, as in the curveball; it is based on aerodynamic forces and operates at macroscopic scales — i.e. on easily visible objects — but not on smaller particles. The new phenomenon, induced by an electric field, can propel particles down to nanometer scales, moving them along in a controlled direction without any contact or moving parts.

The discovery came about as a surprise, as Sherman was testing some new simulation software for the interactions of tiny nanoscale particles that he was developing, within magnetic and electric fields. The test case he was studying involves placing charged particles in an electrolytic liquid, which are liquids with ions, or charged atoms or molecules, in them.

It was known, he says, that when charged particles just a few tens to hundreds of nanometers across are placed in such liquids they remain suspended within it rather than settling, forming a colloid. Ions then cluster around the particles. The new software successfully simulated this ion clustering. Next, he simulated an electric field across the material. This would be expected to induce a process called electrophoresis, which would propel the particles along in the direction of the applied field. Again, the software correctly simulated the process.

Then Sherman decided to push it further, and gradually increased the strength of the electric field. “But then we saw this funny thing,” he says. “If the field was strong enough, you would get normal electrophoresis for a tiny bit, but then the colloids would spontaneously start spinning.” And that’s where the Magnus effect comes in.

Not only were the particles spinning in the simulations as they moved along, but “those two motions coupled together, and the spinning particle would veer off of its path,” he says. “It’s kind of strange, because you apply a force in one direction, and then the thing moves in an orthogonal [right-angle] direction to what you've specified.” It’s directly analogous to what happens aerodynamically with spinning balls, he says. “If you throw a curveball in baseball, it goes in the direction you threw it, but then it also veers off. So this is a kind of a microscopic version of that well-known macroscopic Magnus effect.”

When the applied field was strong enough, the charged particles took on a strong motion in the direction perpendicular to the field. This could be useful, he says, because with electrophoresis “the particle moves toward one of the electrodes, and you run into this problem where the particle will move and then it will run into the electrode, and it’ll stop moving. So you can’t really generate a continuous motion with just electrophoresis.”

Instead, since this new effect goes at right angles to the applied field, it could be used for example to propel particles along a microchannel, simply by placing electrodes on the top and bottom. That way, he says, the particle will “just move along the channel, and it will never bump into the electrodes.” That makes it, he says, “actually a more efficient way to direct the motion of microscopic particles.”

There are two different kinds of examples of processes where this ability might come in handy, he says. One is to use the particle to deliver some sort of “cargo” to a specific location. For example, the particle could be attached to a therapeutic drug “and you’re trying to get it to a target site that needs that drug, but you can’t get the drug there directly,” he says. Or the particle might contain some sort of chemical reactant or catalyst that needs to be directed to a specific channel to carry out its desired reaction.

The other example is sort of the inverse of that process: picking up some kind of target material and bringing it back. For example, a chemical reaction to generate a product might also generate a lot of unwanted byproducts. “So you need a way to get a product out,” he says. These particles can be used to capture the product and then be extracted using the applied electric field. “In this way they kind of act as little vacuum cleaners,” he says. “They pick up the thing you want, and then you can move them somewhere else, and then release the product where it’s easier to collect.”

He says this effect should apply for a wide array of particle sizes and particle materials, and the team will continue to study how different material properties affect the rotation speed or the translation speed of this effect. The basic phenomenon should apply to virtually any combination of materials for the particles and the liquid they are suspended in, as long as the two differ from each other in terms of an electrical property called the dielectric constant.

The researchers looked at materials with a very high dielectric constant, such as metal particles, suspended in a much lower-conducting electrolyte, such as water or oils. “But you might also be able to see this with any two materials that have a contrast” in dielectric constant, Sherman says, for example with two oils that don’t mix and thus form suspended droplets.

The work was supported by NASA and the National Science Foundation.

###

Written by David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius,
MIT News Office

617.253.2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Spontaneous electrokinetic Magnus effect.”:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project