Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A scaffold at the center of our cellular skeleton: UNIGE researchers have discovered a new nano-structure that lies at the center of our cellular skeleton; this discovery will allow to better understand how the cell maintains its architecture as well as the pathologies associated

Schematic view of the nano-cylinder (fuchsia) which is in the center of the cell skeleton (in black on the image).

CREDIT
© UNIGE
Schematic view of the nano-cylinder (fuchsia) which is in the center of the cell skeleton (in black on the image). CREDIT © UNIGE

Abstract:
All animal cells have an organelle called a centrosome, which is essential to the organization of their cell skeleton. The centrosome plays fundamental roles, especially during cell division, where it allows equal sharing of genetic information between two daughter cells. When the cells stop dividing, the centrioles, cylindrical structures composed of microtubules at the base of the centrosome, migrate to the plasma membrane and allow the formation of primary and mobile cilia, which are used respectively for the transfer of information and the genesis of movement. While performing these crucial biological functions, centrioles are therefore subjected to many physical forces, which they must resist. Scientists from the University of Geneva (UNIGE) have discovered an internal structure at the center of these nano-cylinders, a real cellular scaffolding that maintains the physical integrity of this organelle. This study, published in the journal Science Advances, will provide a better understanding of the functions of the centriole and the pathologies associated with its dysfunction.

A scaffold at the center of our cellular skeleton: UNIGE researchers have discovered a new nano-structure that lies at the center of our cellular skeleton; this discovery will allow to better understand how the cell maintains its architecture as well as the pathologies associated

Geneva, Switzerland | Posted on February 21st, 2020

The centrioles, cylindrical nano-structures, form the centrosome, the main microtubule organizing center of the cell skeleton, and the cilia, real cellular antennas. Defects in the assembly or functioning of the centriole can lead to pathologies in humans, such as ciliopathies, retinal disorders that can cause loss of vision.

Super-powered microscopes

Centrioles, formed by microtubules, are components of the cell skeleton. "They have a canonical organization defined by nine triplets of microtubules that must be maintained as a structural unit in order to resist the various forces they face during their cellular functions,» explains Paul Guichard, Professor in the Department of Cell Biology of the Faculty of Science at UNIGE. The group of Paul Guichard and Virginie Hamel, a researcher at the Department of Cell Biology and co-leader of the study, discovered an internal scaffolding for this organelle using high-powered electron microscopes, in collaboration with researchers at the University of Basel and the Helmholtz Campus in Neuherberg, Germany. "This study allowed to analyze centrioles of four different species and to demonstrate that this inner scaffold is present systematically", reports Maeva Le Guennec, a UNIGE researcher and first author of the study.

"We then investigated which centriolar proteins were located in this new structure", says Virginie Hamel. To do this, the UNIGE researchers used an innovative super-resolution method, called expansion microscopy, which makes it possible to inflate cells without deforming them in order to observe their internal organization. Thus, they were able to identify four proteins that are located at the level of this inner scaffold.

Towards a better understanding of retinal degeneration

"We realized that the four proteins we identified are associated with pathologies related to retinal degeneration", notes Virginie Hamel. The loss of retinal photoreceptors is possibly due to a failure to maintain the microtubule doublets present in these specialized cells. "We now intend to discover the possible link between such a structural maintenance defect and retinal disorders, in order to pave the way for a better understanding of this pathology", concludes Paul Guichard.

####

For more information, please click here

Contacts:
Paul Guichard

41-223-796-750

@UNIGEnews

Copyright © UNIGE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Possible Futures

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanomedicine

Detecting breast cancer through a spit test February 16th, 2024

Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024

Researchers develop technique to synthesize water-soluble alloy nanoclusters January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Discoveries

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project