Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease

Xiongbin Lu, Ph.D., is a nationally recognized cancer biologist and the Vera Bradley Foundation Professor of Breast Cancer Innovation at Indiana University School of Medicine.

CREDIT
Indiana University School of Medicine
Xiongbin Lu, Ph.D., is a nationally recognized cancer biologist and the Vera Bradley Foundation Professor of Breast Cancer Innovation at Indiana University School of Medicine. CREDIT Indiana University School of Medicine

Abstract:
Unlike the three most common forms of breast cancer, triple negative breast cancer has no currently approved targeted therapies for treatment. That was one of the reasons it was chosen as a disease area of focus for the Indiana University Precision Health Grand Challenge initiative, aimed to research and develop better treatments, cures or preventions, as quickly as possible.

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease

Indianapolis, IN | Posted on March 22nd, 2019

Xiongbin Lu, PhD, a researcher in the Vera Bradley Foundation Center for Breast Cancer Research at Indiana University School of Medicine, working in collaboration with researchers from the University of Maryland, recently reported several important findings related to triple negative breast cancer and its treatment future, in the prestigious journal Nature Nanotechnology.

According to the paper now available online, TP53 is the most frequently mutated gene in triple negative breast cancer, meaning it is fueling the growth of this aggressive form of breast cancer. However, the problem with trying to target mutated TP53, specifically, is that it is not a druggable target, because of its potential toxicity - or ability to kill - nearby healthy cells.

In response, the scientists went searching for the next likely suspect to target, and found a neighboring gene to TP53, known as POLR2A, which is a viable target, but required some additional effort.

Lu, also a researcher at the Indiana University Melvin and Bren Simon Cancer Center, said, "Think of POLR2A as both a checking and savings account. In a healthy cell, both accounts exist. In a triple negative breast cancer cell, only the checking account exists due to the partial deletion of this particular essential gene, and if you take it away, the individual cannot survive."

However, utilizing nanotechnology (scientific technology on a microscopic scale), the group created what is known as a nano-bomb targeting POLR2A. The nano-bomb is created in a form that is stable in serum and when an instance of the POLR2A inhibitor-containing nano-bomb is delivered into a triple negative breast cancer cell, the bomb grows to 100 times its normal size and through a controlled release, kills only the cancerous cell, leaving the healthy cells alive. Essentially, using Dr. Lu's analogy, "leaving the checking account open."

Lu and a collaborator have patented this nanotechnology approach, which also has potential implications in other cancers that display the mutated TP53 gene, such as ovarian, lung and colorectal cancer. "We're still in the early stages of research, but I am excited about this approach and its potential to lead to a targeted therapy option for women with triple negative breast cancer," Lu said.

####

About Indiana University
Indiana University School of Medicine is one of the nation's premier medical schools and is a leader and innovator in medical education, research and clinical care. The country's largest medical school, IU School of Medicine educates more than 1,700 medical and graduate degree students on nine campuses in Indiana, and its faculty holds nearly $340 million in research grants and contracts, to advance the School's missions and promote life sciences. For more information, please visit medicine.iu.edu.

For more information, please click here

Contacts:
Christine Drury

317-278-2854

Copyright © Indiana University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Cancer

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project