Home > Press > Fluid-inspired material self-heals before your eyes: Coating for metals rapidly heals over scratches and scrapes to prevent corrosion
![]() |
Oil in a graphene network Kristin Samuelson |
Abstract:
Novel material works by trapping oil within pockets of graphene
When scratched, network releases free oil to readily flow and heal within seconds
Could address localized corrosion, which causes large, metal structures to fail
Works underwater, in harsh chemical environments and when subjected to strong turbulence
It’s hard to believe that a tiny crack could take down a gigantic metal structure. But sometimes bridges collapse, pipelines rupture and fuselages detach from airplanes due to hard-to-detect corrosion in tiny cracks, scratches and dents.
A Northwestern University team has developed a new coating strategy for metal that self-heals within seconds when scratched, scraped or cracked. The novel material could prevent these tiny defects from turning into localized corrosion, which can cause major structures to fail.
“Localized corrosion is extremely dangerous,” said Jiaxing Huang, who led the research. “It is hard to prevent, hard to predict and hard to detect, but it can lead to catastrophic failure.”
When damaged by scratches and cracks, Huang’s patent-pending system readily flows and reconnects to rapidly heal right before the eyes. (Watch video.) The researchers demonstrated that the material can heal repeatedly — even after scratching the exact same spot nearly 200 times in a row.
The study was published today (Jan. 28) in Research, the first Science Partner Journal recently launched by the American Association for the Advancement of Science (AAAS) in collaboration with the China Association for Science and Technology (CAST). Huang is a professor of materials science and engineering in Northwestern’s McCormick School of Engineering.
While a few self-healing coatings already exist, those systems typically work for nanometer- to micron-sized damages. To develop a coating that can heal larger scratches in the millimeter-scale, Huang and his team looked to fluid.
“When a boat cuts through water, the water goes right back together,” Huang said. “The ‘cut’ quickly heals because water flows readily. We were inspired to realize that fluids, such as oils, are the ultimate self-healing system.”
But common oils flows too readily, Huang noted. So he and his team needed to develop a system with contradicting properties: fluidic enough to flow automatically but not so fluidic that it drips off the metal’s surface.
The team met the challenge by creating a network of lightweight particles — in this case graphene capsules — to thicken the oil. The network fixes the oil coating, keeping it from dripping. But when the network is damaged by a crack or scratch, it releases the oil to flow readily and reconnect. Huang said the material can be made with any hollow, lightweight particle — not just graphene.
“The particles essentially immobilize the oil film,” Huang said. “So it stays in place.”
The coating not only sticks, but it sticks well — even underwater and in harsh chemical environments, such as acid baths. Huang imagines that it could be painted onto bridges and boats that are naturally submerged underwater as well as metal structures near leaked or spilled highly corrosive fluids. The coating can also withstand strong turbulence and stick to sharp corners without budging. When brushed onto a surface from underwater, the coating goes on evenly without trapping tiny bubbles of air or moisture that often lead to pin holes and corrosion.
“Self-healing microcapsule-thickened oil barrier coatings” was supported by the Office of Naval Research (ONR N000141612838). Graduate student Alane Lim and Chenlong Cui, a former member of Huang’s research group, served as the paper’s co-first authors.
####
For more information, please click here
Contacts:
Amanda Morris
847-467-6790
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023
VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023
Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023
Graphene/ Graphite
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Self-repairing Materials
Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020
Self-driving microrobots December 10th, 2019
Disruptive by Design: Nano Now February 1st, 2019
Manufacturing microspheres: Technique mass-produces uniform, encapsulated particles for pharmaceuticals, many other uses October 6th, 2016
Govt.-Legislation/Regulation/Funding/Policy
2D material reshapes 3D electronics for AI hardware December 8th, 2023
World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Possible Futures
World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023
VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023
Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023
Discoveries
Thermal impact of 3D stacking photonic and electronic chips: Researchers investigate how the thermal penalty of 3D integration can be minimized December 8th, 2023
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Materials/Metamaterials/Magnetoresistance
2D material reshapes 3D electronics for AI hardware December 8th, 2023
Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023
Porous platinum matrix shows promise as a new actuator material November 17th, 2023
A new kind of magnetism November 17th, 2023
Announcements
2D material reshapes 3D electronics for AI hardware December 8th, 2023
VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023
Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023
Military
World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |