Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New materials could help improve the performance of perovskite solar cells

Perovskites responding to light. Credit Greg Stewart/SLAC National Accelerator Laboratory) https://creativecommons.org/licenses/by-nc-sa/2.0/
Perovskites responding to light. Credit Greg Stewart/SLAC National Accelerator Laboratory) https://creativecommons.org/licenses/by-nc-sa/2.0/

Abstract:
New research could lead to the design of new materials to help improve the performance of perovskite solar cells (PSCs).

New materials could help improve the performance of perovskite solar cells

Portsmouth, UK | Posted on January 11th, 2019

Perovskite solar cells are an emerging photovoltaic technology that has seen a remarkable rise in power conversion ef?ciency to above 20 per cent.

However, PSC performance is affected as the perovskite material contains ion defects that can move around over the course of a working day. As these defects move, they affect the internal electric environment within the cell.

The Perovskite material is responsible for absorbing light to create electronic charge, and also for helping to extract the charge into an external circuit before it is lost to a process called 'recombination'.

The majority of detrimental recombination can occur in different locations within the solar cell. In some designs it occurs predominantly within the perovskite, while in others it happens at the edges of the perovskite where it contacts the adjacent materials known as transport layers.

Researchers from the Universities of Portsmouth, Southampton and Bath have now developed a way to adjust the properties of the transport layers to encourage the ionic defects within the perovskite to move in such a way that they suppress recombination and lead to more efficient charge extraction - increasing the proportion of the light energy falling on the surface of the cell that can ultimately be used.

Dr Jamie Foster from the University of Portsmouth, who was involved in the study, said: "Careful cell design can manipulate the ionic defects to move to regions where they enhance the extraction of electronic charge, thereby increasing the useful power that a cell can deliver."

The study, published in Energy and Environmental Science, showed that the performance of PSCs are strongly dependent on the permittivity (the measure of a material's ability to store an electric field) and the effective doping density of the transport layers.

Dr Foster said: "Understanding how and which transport layer properties affect cell performance is vital for informing the design of cell architectures in order to obtain the most power while minimising degradation.

"We found that ion movement plays a signi?cant role in the steady-state device performance, through the resulting accumulation of ionic charge and band bending in narrow layers adjacent to the interfaces between the perovskite and the transport layers. The distribution of the electric potential is key in determining the transient and steady-state behaviour of a cell.

"Further to this, we suggest that the doping density and/or permittivities of each transport layer may be tuned to reduce losses due to interfacial recombination. Once this and the rate limiting charge carrier has been identi?ed, our work provides a systematic tool to tune transport layer properties to enhance performance."

The researchers also suggest that PSCs made using transport layers with low permittivity and doping are more stable, than those with high permittivity and doping. This is because such cells show reduced ion vacancy accumulation within the perovskite layers, which has been linked to chemical degradation at the edges of the perovskite layer.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-808-42728

Copyright © University of Portsmounth

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Perovskites

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Making solar cells is like buttering bread March 22nd, 2019

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Possible Futures

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Discoveries

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Materials/Metamaterials

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene April 5th, 2019

Tuneable reverse photochromes in the solid state April 3rd, 2019

Announcements

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Energy

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

Solar/Photovoltaic

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Making solar cells is like buttering bread March 22nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project