Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water

(a) Atomistic model of calcite surface. (b) The dissolution processes of calcite surface in water observed with high-speed FM-AFM. It is observed that the step is moving from lower-right to upper-left. Along the step is also seen the transition region. (c) Averaged height profile measured along the line PQ indicated in (b). The height of a monolayer step is ~0.3 nm, but that of the transition region is smaller. A terrace described in the Figure indicates a flat area at the atomic level on the crystal surface. The upper terrace is higher by one monolayer of CaCO3 than the lower terrace.
CREDIT
Kanazawa University
(a) Atomistic model of calcite surface. (b) The dissolution processes of calcite surface in water observed with high-speed FM-AFM. It is observed that the step is moving from lower-right to upper-left. Along the step is also seen the transition region. (c) Averaged height profile measured along the line PQ indicated in (b). The height of a monolayer step is ~0.3 nm, but that of the transition region is smaller. A terrace described in the Figure indicates a flat area at the atomic level on the crystal surface. The upper terrace is higher by one monolayer of CaCO3 than the lower terrace. CREDIT Kanazawa University

Abstract:
Calcite is one of the most abundant components of the Earth crust, the outer-most layer of the Earth, constituting as the largest carbon reservoir in the global carbon cycle in nature. Thus, large-scale dissolution of calcite would give an enormous impact on the weather, geography, aquatic environment and so on; more specifically, for example, changes in the carbon dioxide concentration of the air and the acidity of the ocean. Recently, the dissolution mechamism of calcite attracts much attention because of its importance in geologic carbon sequestration (GCS) technology to capture carbon dioxide from the air and to store it underground. In order to precisely predict such a large-scale and long-term phenomenon, the dissolution mechanism of calcite should be understood at an atomic level in a precise manner.

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water

Kanazawa, Japan | Posted on July 28th, 2017

When a crystal of calcite is immersed in water (Figure 1a), it is observed that a monolayer of ~0.3 nm thickness (height), called the step*, is formed on the surface exposed to water and that the crystal dissolution proceeds as desorption of atoms from the step edege to aqueous solution. Therefore, understanding of atomistic events at step edges is essential for elucidation of the dissolution processes. Nonetheless, due to the limitations of measurement technologies, it was difficult to directly observe high-speed structural changes associated with the atomistic dissolution process. Thus, many aspects of crystal growth and dissolution mechanism, including those of calcite, remained unclear.

AFM has a truly unique advantage, that is, capability of observation of the surface morphology of insulating materials. Therefore, AFM is thought to be a measurement technique that may have great potential to solve the problem described above. Nonetheless, conventional AFMs, even the leading-edge ones, did not have enough spatial or temporal resolution, which did not allow the problem to be solved nor the atomistic movements to be observed.

[Results]

The researchers of Kanazawa University, Japan, have been leading the development of technologies for frequency modulation AFM (FM-AFM) over years, and have revolutionized the temporal resolution to be ~1 s/frame from the conventional one, ~1 min/frame. The international research team led by the researchers of Kanazawa University, with Aalto University, Finland and Tohoku University, Japan, succeeded in direct observation of the dissolution processes of calcite surface in water as well as of structural changes around step edges at atomistic level for the first time in the world. Moreover, from the FM-AFM images, the team has found that the transition region of a few nm width along a step is formed as an intermediate state in the dissolution processes (Figure 1b). The formation of this transition region was not foreseen by previous studies, so that without our present high-speed FM-AFM, it would not have been discovered. In addition, in order to elucidate the origin of the transition region and dissolution mechanism, the team examined the validity of various transition region models by density functional theory calculations and by molecular dynamics simulations (Figure 2). It was found that the transition region would most likely be a Ca(OH)2 monolayer formed as an intermediate state in the dissolution processes of calcite. Based on these results, the team proposes a dissolution mechanism at atomistic level as follows (Figure 3).

1. At the step edges, dissociative adsorption of a water molecule leads to generation of ion pair of surface-bound CaOH+ and free HCO3-.
2. HCO3- is decomposed and surface-bound Ca(OH)2 and free CO2 are formed.
3. Repetition of these reactions forms the transition region consisting of a Ca(OH)2 monolayer at the step edge.
4. At the peripheries of the transition region, stability of the surface-adsorbed Ca(OH)2 molecules depends on the distance from the step edge, and at a certain distance (typically, a few nm) or more, Ca(OH)2 dissociates.

To the team's knowledge, this is the very first proposal for the dissolution processes at atomistic level based on such direct experimental evidences. Moreover, this is also the first proposal for the dissolution mechanism of calcite with the formation of transition region taken into consideration. Thus, the team believes that the present study promotes the understanding of calcite dissolution mechanism at atomistic level to a great extent.

[Significance and future development]

The precise understanding of the dissolution processes of calcite at atomistic level obtained in this study may enable us to comprehend the physical meanings of empirical parameters used for simulations of the dissolution processes at a macroscopic level. This may also lead to accurate prediction of dissolution behaviors in various solution environments in nature, and the present study is expected to make contributions, in the future, to better prediction accuracy of the global carbon cycle. Furthermore, the high-speed FM-AFM developed and reported in this study will be applicable not only to studies of the dissolution processes of calcite but to those of crystal growth, dissolution and self-assembly of a variety of minerals and organic as well as biological molecules. It will also be quite useful for observation and investigation of a wide variety of solid-liquid interface phenomena at atomistic level such as metal corrosion, catalytic reaction, etc. Since there were no appropriate direct observation means available for those phenomena, the present high-speed FM-AFM is expected to pave the way for discoveries of various phenomena so far unknown.

###

[Glossary]

*Step
On crystal surface, there are flat regions, called terrace, but at the periphery of a terrace, there are steps between the terraces having different heights. A step with a height of single layer of crystal-constituting molecules is called mono-molecular step.

####

For more information, please click here

Contacts:
Fujiko Imanaga

81-762-645-977

Copyright © Kanazawa University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project