Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New photoacoustic technique detects gases at parts-per-quadrillion level

Using a new technique a device can detect gases, such as environmental pollutants, in extremely minute concentrations.
CREDIT
Gerald Diebold
Using a new technique a device can detect gases, such as environmental pollutants, in extremely minute concentrations. CREDIT Gerald Diebold

Abstract:
A team of researchers has found a way to detect trace gases down to concentrations at the parts-per-quadrillion level using a new variation on the photoacoustic effect, a technique that measures the sound generated when light interacts with molecules.

New photoacoustic technique detects gases at parts-per-quadrillion level

Providence, RI | Posted on June 30th, 2017

"In many ways, the photoacoustic effect is already the most practical method available for detecting pollutants in the atmosphere," said Gerald Diebold, a professor of chemistry at Brown University and coauthor of a new paper describing his lab's research. "But when the concentration of the molecules you're trying to detect gets down to the parts-per-trillion level, the signal become too weak to detect. We've developed a new photoacoustic technique that boosts the signal and enables us to get down to the parts-per-quadrillion level, which to our knowledge is a record."

The study, which was a collaboration between Diebold's lab at Brown and the lab of Fapeng Yu at Shandong University in China, is published in the Proceedings of the National Academy of Sciences.

The photoacoustic effect takes place when a beam of light is absorbed by a gas, liquid or solid causing it to expand. The expansion is a mechanical motion that results in the launching of a sound wave. The effect was first discovered by Alexander Graham Bell in the 1880s but was of little practical value until the invention of the laser, which -- as a result of its typically narrow linewidth and high power -- made photoacoustic signals large enough to be easily detectable.

Photoacoustic detectors work by zapping a material with a laser tuned to a wavelength that is absorbed by the molecule of interest. In a typical photoacoustic experiment, the laser beam is switched on and off at a frequency that can be detected by a sensitive microphone to listen for any sound waves produced. Different molecules absorb light at different frequencies, so by adjusting the frequency of the laser, it's possible to fine-tune a detector for specific substances. So to look for ammonia in air, for example, the laser would be tuned to the specific absorption frequency of ammonia molecules. One would then zap an air sample, and if the microphone picks up sound waves, that means the sample contains ammonia.

But the smaller the concentration of the target substance, the quieter the signal. So Diebold and his colleagues used an unconventional technique to boost the signal amplitude.

"What we've done is devise a method that relies on three different resonances," Diebold said. "The signal gets bigger with each resonance."

Instead of a single laser beam, Diebold and his colleagues combine two beams at a specific frequency and angle. The joining of the beams creates a grating -- a pattern of interference between the two beams. When the laser frequencies are tuned just right, the grating travels in a detection cell at the speed of sound, creating an amplification effect at each of the peaks in the grating.

The second resonance is created by a piezoelectric crystal used in the experiment, which vibrates precisely at the frequency of the combined laser beams. The small compressive forces in the pressure waves gradually induce motion in a crystal much in the same way that small, repeated pushes of a playground swing can cause a large amplitude motion of the swing.

The third resonance is generated by adjusting the length of the cavity in which the crystal is mounted so that it resonates when an integral number of half wavelengths of the sound exactly matches the cavity length. The output of the crystal, which is piezoelectric so that it generates a voltage proportional to its oscillatory motion, is sent to amplifiers and sensitive electronic devices to record the acoustic signal.

"One of the reasons that the moving grating method worked so well is that Professor Yu's group at Shandong University grew a special crystal that gives very large signals in response to the pressure waves," Diebold said. "We were told that it took them three months to synthesize the crystal."

In their experiments, the researchers showed that by using those three resonances, they were able to detect the gas sulfur hexafluoride in amounts down to the parts per quadrillion.

Diebold thinks the technique will be useful in developing detectors that are sensitive to very low pollutant gas concentrations, or for detecting molecules that have weak absorptions that make them inherently difficult to detect.

Diebold noted that in carrying out the experiments, he and his colleagues were "amazed to find that because the frequencies are so high -- in the hundreds of kilohertz range -- that there is virtually no background interference, either from electrical sources or from acoustic from room noise, wind or vibrations of a building. That means we can do experiments in an open cavity without having to block outside noise. So if you have a landfill and you're trying to detect methane, for example, you just take this detector, sit it there in open air and continuously monitor the output."

There remains some work on engineering a compact instrument before this technique can be used outdoors, but this study offers a convincing proof of concept, the researchers say.

###

Diebold's coauthors on the paper were Brown graduate students Lian Xiong and Wenyu Bai, along with Feifei Chen, Xian Zhao and Fapeng Yu from Shandong University in China. The research was funded in part by the U.S. Department of Energy (DE-SC0001082).

####

For more information, please click here

Contacts:
David Orenstein

401-863-1862

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project