Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer

Abstract:
Epidermal growth factor plays a critical role in breast malignancies by enhancing cell proliferation, invasion, angiogenesis and metastasis. Epithelial-mesenchymal transition (EMT) is a crucial process by which epithelial cells lose polarity and acquire migratory mesenchymal properties. Gold nanoparticles are an efficient drug delivery vehicle for carrying chemotherapeutic agents to target cancer cells and quercetin is an anti-oxidative flavonoid known with potent anti-malignant cell activity.
MATERIALS AND METHODS:

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer

Chennai, India | Posted on September 27th, 2016

Cell viability was assessed by MTT assay, and protein expression was examined by Western blotting and immunocytochemistry. Cell invasion was monitored using invasion chambers, and cell migration was analysed by scratch wound-healing assay. In vitro and ex vivo angiogenesis studies were performed by capillary-like tube formation assay and chick embryo angiogenesis assay (CEA). 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary carcinoma in Sprague-Dawley rats.

RESULTS:
We observed a significant reduction in protein expression of vimentin, N-cadherin, Snail, Slug, Twist, MMP-2, MMP-9, p-EGFR, VEGFR-2, p-PI3K, Akt and p-GSK3β, and enhanced E-cadherin protein expression in response to AuNPs-Qu-5 treatment. AuNPs-Qu-5 inhibited migration and invasion of MCF-7 and MDA-MB-231 cells compared to free quercetin. AuNPs-Qu-5-treated HUVECs had reduced cell viability and capillary-like tube formation. In vitro and in vivo angiogenesis assays showed that AuNPs-Qu-5 suppressed tube and new blood vessel formation. Treatment with AuNPs-Qu-5 impeded tumour growth in DMBA-induced mammary carcinoma in SD rats compared to treatment with free quercetin.

CONCLUSION:
Our results suggest that AuNPs-Qu-5 inhibited EMT, angiogenesis and metastasis of the breast cancer cells tested by targeting the EGFR/VEGFR-2 signalling pathway

####

For more information, please click here

Contacts:
Balakrishnan Solaimuthu
Phone: 9884940150

Copyright © Cell Proliferation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project