Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductivity: After the scenario, the staging

Abstract:
Superconductivity with a high critical temperature (high Tc) continues to present a theoretical mystery. While this phenomenon is experimentally well established, no scientist has managed to explain its mechanism. In the late 90's, the British physicist Anthony Leggett proposed a scenario based on the Coulomb energy. Today, researchers at the University of Geneva (UNIGE), Switzerland, in collaboration with Leggett and his group, committed to test this scenario. Their findings challenge Leggett's conjecture, opening new avenues for the explanation of high Tc superconductivity. These results are available in the journal Physical Review X.

Superconductivity: After the scenario, the staging

Geneva, Switzerland | Posted on August 20th, 2016

Superconductivity is at the heart of intensive research in physics, in particular because of its remarkable electronic properties, such as the absence of electrical resistance. Its properties make it an indispensable element for applications in medicine, as well as in transportation and energy storage.

In the late 90's, Prof. Leggett of the University of Illinois presented a scenario for high Tc superconductivity in the cuprates, materials consisting primarily of copper and oxygen. In his scenario, the transition of the material into the superconducting state is a direct consequence of a decrease of that part of the Coulomb energy which is associated with long wavelengths and «midinfrared» frequencies. It remained to be tested experimentally; optical spectroscopy proves to be a suitable technique for probing this part of the Coulomb energy.

The team of Dirk van der Marel, professor at the Department of physics of quantum matter of UNIGE Faculty of Science, has addressed this issue and the many challenges associated to it. 'We have set up an experimental device and a protocol for measuring the long range Coulomb energy. By varying the temperature and the light frequency applied to several superconducting samples, we observed the subtle influence of superconductivity on the Coulomb energy', explains Dirk van der Marel.

The importance of chemical doping

Based on cuprate superconductors, UNIGE physicists have observed that the behavior of the Coulomb energy at the superconducting transition depends on the doping -i.e. the lack (or excess) of electrons: for some values of the doping it decreases, but for others it stagnates or even increases. Changes in temperature of the Coulomb energy appear linked to the doping of the sample: 'there is a critical doping below which the observed behaviour is opposite to Leggett's scenario', says the physicist.

These experimental advances still do not explain high Tc superconductivity in the cuprates, however, they permit to make progress in the understanding and to adapt existing theories having foundations in common with Leggett's scenario. They can be extended to the measurement of the Coulomb energy in other superconducting materials, to other phenomena such as magnetism, to other methods, and provide directions for the development of experiments which will further advance the understanding of superconductivity and other quantum phenomena.

####

For more information, please click here

Contacts:
Dirk Van der Marel

41-223-796-234

Copyright © University of Geneva (UNIGE)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Physics

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Superconductivity

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project