Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new leaf: Scientists turn carbon dioxide back into fuel

In a new study from the U.S. Department of Energy's Argonne National Laboratory and the University of Illinois at Chicago, researchers have found a way to convert carbon dioxide into a usable energy source by using sunlight. Image: Shutterstock
In a new study from the U.S. Department of Energy's Argonne National Laboratory and the University of Illinois at Chicago, researchers have found a way to convert carbon dioxide into a usable energy source by using sunlight.

Image: Shutterstock

Abstract:
As scientists and policymakers around the world try to combat the increasing rate of climate change, they have focused on the chief culprit: carbon dioxide.

A new leaf: Scientists turn carbon dioxide back into fuel

Argonne, IL | Posted on August 2nd, 2016

Produced by the burning of fossil fuels in power plants and car engines, carbon dioxide continues to accumulate in the atmosphere, warming the planet. But trees and other plants do slowly capture carbon dioxide from the atmosphere, converting it to sugars that store energy.

In a new study from the U.S. Department of Energy's Argonne National Laboratory and the University of Illinois at Chicago, researchers have found a similar way to convert carbon dioxide into a usable energy source using sunlight.

One of the chief challenges of sequestering carbon dioxide is that it is relatively chemically unreactive. "On its own, it is quite difficult to convert carbon dioxide into something else," said Argonne chemist Larry Curtiss, an author of the study.

To make carbon dioxide into something that could be a usable fuel, Curtiss and his colleagues needed to find a catalyst - a particular compound that could make carbon dioxide react more readily. When converting carbon dioxide from the atmosphere into a sugar, plants use an organic catalyst called an enzyme; the researchers used a metal compound called tungsten diselenide, which they fashioned into nanosized flakes to maximize the surface area and to expose its reactive edges.

While plants use their catalysts to make sugar, the Argonne researchers used theirs to convert carbon dioxide to carbon monoxide. Although carbon monoxide is also a greenhouse gas, it is much more reactive than carbon dioxide and scientists already have ways of converting carbon monoxide into usable fuel, such as methanol. "Making fuel from carbon monoxide means travelling 'downhill' energetically, while trying to create it directly from carbon dioxide means needing to go 'uphill,'" said Argonne physicist Peter Zapol, another author of the study.

Although the reaction to transform carbon dioxide into carbon monoxide is different from anything found in nature, it requires the same basic inputs as photosynthesis. "In photosynthesis, trees need energy from light, water and carbon dioxide in order to make their fuel; in our experiment, the ingredients are the same, but the product is different," said Curtiss.

The setup for the reaction is sufficiently similar to nature that the research team was able to construct an "artificial leaf" that could complete the entire three-step reaction pathway. In the first step, incoming photons - packets of light - are converted to pairs of negatively-charged electrons and corresponding positively-charged "holes" that then separate from each other. In the second step, the holes react with water molecules, creating protons and oxygen molecules. Finally, the protons, electrons and carbon dioxide all react together to create carbon monoxide and water.

"We burn so many different kinds of hydrocarbons - like coal, oil or gasoline - that finding an economical way to make chemical fuels more reusable with the help of sunlight might have a big impact," Zapol said.

Towards this goal, the study also showed that the reaction occurs with minimal lost energy - the reaction is very efficient. "The less efficient a reaction is, the higher the energy cost to recycle carbon dioxide, so having an efficient reaction is crucial," Zapol said.

According to Curtiss, the tungsten diselenide catalyst is also quite durable, lasting for more than 100 hours - a high bar for catalysts to meet.

The research was funded by the U.S. Department of Energy's Office of Science and the National Science Foundation.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

For more information, please click here

Contacts:
Jared Sagoff

630-252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study, "Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid," is published in today's issue of Science. Much of the experimental work was performed at the University of Illinois at Chicago, while the computational work was performed at Argonne:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Environment

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project