Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Radiation-guided nanoparticles zero in on metastatic cancer

This is a schematic illustration of selectins' role in inflammation (A) and cancer progression (B). This mechanism can be used for selectin-based targeted therapy (C). This material relates to a paper that appeared in the June 29, 2016 issue of Science Translational Medicine, published by AAAS. The paper, by Y. Shamay at Memorial Sloan Kettering Cancer Center	in	New York, NY, and colleagues was titled, "P-selectin is a nanotherapeutic delivery target in the tumor microenvironment."
CREDIT: Kedmi et al., Science Translational Medicine (2016)
This is a schematic illustration of selectins' role in inflammation (A) and cancer progression (B). This mechanism can be used for selectin-based targeted therapy (C). This material relates to a paper that appeared in the June 29, 2016 issue of Science Translational Medicine, published by AAAS. The paper, by Y. Shamay at Memorial Sloan Kettering Cancer Center in New York, NY, and colleagues was titled, "P-selectin is a nanotherapeutic delivery target in the tumor microenvironment."

CREDIT: Kedmi et al., Science Translational Medicine (2016)

Abstract:
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle. That's the approach researchers working in mice have taken in a new study that aims to make delivery of chemotherapy to metastatic tumors more effective.

Radiation-guided nanoparticles zero in on metastatic cancer

Washington, DC | Posted on July 1st, 2016

The researchers say that the radiation-guided nanoparticles may offer a new approach for penetrating the vascular barrier that often thwarts current nanomedicines from reaching metastatic tumors. To spread to distant organs, cancer cells in the bloodstream latch onto adhesion molecules known as P-selectins in the blood vessel walls. Yosi Shamay and colleagues further found that unlike normal tissues, many human cancers--including lung, ovarian, breast, and liver--overexpress P-selectin on tumor cells and in surrounding blood vessels. To exploit this molecule as a therapeutic target, the researchers designed nanoparticle drug carriers composed of fucoidan, a seaweed-derived compound that naturally binds to P-selectin. In a mouse model of lung cancer and metastatic melanoma and breast tumors, all of which express P-selectin, the nanoparticles selectively delivered chemotherapy drugs to the tumors, improving tumor reduction and overall survival better than did the free form of the drugs or drug-loaded nanoparticles not made of fucoidan. For tumors that do not normally express P-selectin, Shamay et al. used radiation, which is known to boost P-selectin expression in tissues, to guide the nanoparticles to the tumor site. When combined with radiation, the nanotherapy effectively shrunk lung tumors lacking P-selectin in mice. In a related Focus, Ranit Kedmi and Dan Peer discuss the promises and challenges of moving the nanotherapy to the clinic. Radiation-guided nanoparticles may offer a new tool for delivering drugs to almost any tumor, they note, but further development would need to address the double-edged sword of radiation's potential to trigger P-selectin expression that might unintentionally promote cancer spread.

####

For more information, please click here

Contacts:
Science Press Package Team

202-326-6440

Copyright © American Association for the Advancement of Science (AAAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Cancer

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project