Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners

Researchers at MIT and Sandia National Laboratories have designed a device that is an array of 37 microfabricated lasers on a single chip. Its power requirements are relatively low because the radiation emitted by all of the lasers is "phase locked," meaning that the troughs and crests of its waves are perfectly aligned.
CREDIT: Courtesy of the researchers
Researchers at MIT and Sandia National Laboratories have designed a device that is an array of 37 microfabricated lasers on a single chip. Its power requirements are relatively low because the radiation emitted by all of the lasers is "phase locked," meaning that the troughs and crests of its waves are perfectly aligned.

CREDIT: Courtesy of the researchers

Abstract:
Terahertz radiation -- the band of electromagnetic radiation between microwaves and visible light -- has promising applications in security and medical diagnostics, but such devices will require the development of compact, low-power, high-quality terahertz lasers.

New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners

Cambridge, MA | Posted on June 17th, 2016

In this week's issue of Nature Photonics, researchers at MIT and Sandia National Laboratories describe a new way to build terahertz lasers that could significantly reduce their power consumption and size, while also enabling them to emit tighter beams, a crucial requirement for most practical applications.

The work also represents a fundamentally new approach to laser design, which could have ramifications for visible-light lasers as well.

The researchers' device is an array of 37 microfabricated lasers on a single chip. Its power requirements are so low because the radiation emitted by all of the lasers is "phase locked," meaning that the troughs and crests of its waves are perfectly aligned. The device represents a fundamentally new way to phase-lock arrays of lasers.

In their paper, the researchers identified four previous phase-locking techniques, but all have drawbacks at the microscale. Some require positioning photonic components so closely together that they'd be difficult to manufacture. Others require additional off-chip photonic components that would have to be precisely positioned relative to the lasers. Hu and his colleagues' arrays, by contrast, are monolithic, meaning they're etched entirely from a single block of material.

"This whole work is inspired by antenna engineering technology," says Qing Hu, a distinguished professor of electrical engineering and computer science at MIT, whose group led the new work. "We're working on lasers, and usually people compartmentalize that as photonics. And microwave engineering is really a different community, and they have a very different mindset. We really were inspired by microwave-engineer technology in a very thoughtful way and achieved something that is totally conceptually new."

Staying focused

The researchers' laser array is based on the same principle that underlies broadcast TV and radio. An electrical current passing through a radio antenna produces an electromagnetic field, and the electromagnetic field induces a corresponding current in nearby antennas. In Hu and his colleagues' array, each laser generates an electromagnetic field that induces a current in the lasers around it, which synchronizes the phase of the radiation they emit.

This approach exploits what had previously been seen as a drawback in small lasers. Chip-scale lasers have been an active area of research for decades, for potential applications in chip-to-chip communication inside computers and in environmental and biochemical sensing. But as the dimensions of a laser shrink, the radiation the laser emits becomes more diffuse. "This is nothing like a laser-beam pointer," Hu explains. "It really radiates everywhere, like a tiny antenna."

If a chip-scale laser is intended to emit radiation in one direction, then any radiation it emits in lateral directions is wasted and increases its power consumption. But Hu and his colleagues' design recaptures that laterally emitted radiation.

In fact, the more emitters they add to their array, the more laterally emitted radiation is recaptured, lowering the power threshold at which the array will produce laser light. And because the laterally emitted radiation can travel long distances, similar benefits should accrue as the arrays grow even larger.

"I'm a firm believer that all physical phenomena can be pros or cons," Hu says. "You can't just say unequivocally that such-and-such a behavior is universally a good or bad thing."

Tightening up

In large part, the energy from the recaptured lateral radiation is re-emitted in the direction perpendicular to the array. So the beam emitted by the array is much tighter than that emitted by other experimental chip-scale lasers. And a tight beam is essential for most envisioned applications of terahertz radiation.

In security applications, for instance, terahertz radiation would be directed at a chemical sample, which would absorb some frequencies more than others, producing a characteristic absorption fingerprint. The tighter the beam, the more radiation reaches both the sample and, subsequently, a detector, yielding a clearer signal.

Hu is joined on the paper by first author Tsung-Yu Kao, who was an MIT graduate student in electrical engineering when the work was done and is now chief technology officer at LongWave Photonics, a company that markets terahertz lasers, and by John Reno of Sandia National Laboratories.

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip ramps up AI computing efficiency August 19th, 2022

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project