Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum effects affect the best superconductor: Quantum effects explain why hydrogen sulphide is a superconductor at record-breaking temperatures

This is a structure with symmetric hydrogen bonds induced by the quantum behavior of the protons, represented by the fluctuating blue spheroids.
CREDIT: UPV/EHU
This is a structure with symmetric hydrogen bonds induced by the quantum behavior of the protons, represented by the fluctuating blue spheroids.

CREDIT: UPV/EHU

Abstract:
The theoretical results of a piece of international research published in Nature, whose first author is Ion Errea, a researcher at the UPV/EHU and DIPC, suggest that the quantum nature of hydrogen (in other words, the possibility of it behaving like a particle or a wave) considerably affects the structural properties of hydrogen-rich compounds (potential room-temperature superconducting substances). This is in fact the case of the superconductor hydrogen sulphide: a stinking compound that smells of rotten eggs, which when subjected to pressures a million times higher than atmospheric pressure, behaves like a superconductor at the highest temperature ever identified. This new advance in understanding the physics of high-temperature superconductivity could help to drive forward progress in the search for room-temperature superconductors, which could be used in levitating trains or next-generation supercomputers, for example.

Quantum effects affect the best superconductor: Quantum effects explain why hydrogen sulphide is a superconductor at record-breaking temperatures

Leioa, Bizkaia | Posted on April 9th, 2016

Superconductors are materials that carry electrical current with zero electrical resistance. Conventional or low-temperature ones behave that way only when the substance is cooled down to temperatures close to absolute zero (-273 °C o 0 degrees Kelvin). Last year, however, German researchers identified the high-temperature superconducting properties of hydrogen sulphide which makes it the superconductor at the highest temperature ever discovered: -70 °C or 203 K.

The structure of the chemical bonds between atoms changes

In classical or Newtonian physics it is possible to measure the position and momentum of a moving object to determine where it is going and how long it will take to reach its destination. These two properties are inherently linked. However, in the strange world of quantum physics, it is impossible, according to Heisenberg's uncertainty principle, for specific pairs of observable complementary physical magnitudes of a particle to be known at the same time.

Hydrogen is the lightest element in the periodic table, so it is an atom that is very strongly affected by quantum behaviour. Its quantum nature affects the structural and physical properties of various hydrogen compounds. An example is high-pressure ice where quantum fluctuations of the proton lead to a change in the way the molecules are held together, due to the fact that the chemical bonds between atoms end up being symmetrical. The researchers in this study believe that a similar quantum hydrogen-bond symmetrisation occurs in the hydrogen sulphide superconductor.

The researchers have formulated the calculations by considering the hydrogen atoms as quantum particles behaving like waves, and they have concluded that they form symmetrical bonds at a pressure similar to that used experimentally by the German researchers. So they have succeeded in explaining the phenomenon of superconductivity at record-breaking temperatures because in previous calculations hydrogen atoms were treated as classical particles, which made impossible to explain the experiment. All this highlights the fact that quantum physics and symmetrical hydrogen bonds lie behind high-temperature conductivity in hydrogen sulphide.

The researchers are delighted that the good results obtained in this research show that quantitative predictions and computation can be used with complete confidence to speed up the discovery of high-temperature superconductors. According to the calculations made, the quantum symmetrisation of the hydrogen bonds has a great impact on the vibrational and superconducting properties of hydrogen sulphide. "In order to theoretically reproduce the observed pressure dependence of the superconducting critical temperature, the quantum symmetrisation needs to be taken into account," explained Ion Errea, the lead researcher in the study.

This theoretical study shows that in hydrogen-rich compounds, the quantum motion of hydrogen can strongly affect the structural properties (even modifying the chemical bonding), as well as the electron-phonon interaction that drives the superconducting transition.

In the view of the researchers, theory and computation have played a key role in the search for superconducting hydrides subjected to extreme compression. And they also pointed out that in the future an attempt will be made to increase the temperature until room-temperature superconductivity is achieved while dramatically reducing the pressures required.

###

Additional information

This international research was carried out with the collaboration of researchers from the UPV/EHU-University of the Basque Country and Donostia International Physics Center (DIPC), the UPMC Université Paris 06 (Sorbonne), the University of Cambridge (Cavendish Laboratory), the Jiangsu Normal University, the Carnegie Institution of Washington, Jilin University, and the University of Rome 'La Sapienza'.

The lead researcher in the study was Ion Errea (Donostia-San Sebastian, 1984); he is a PhD holder in Physics and is currently a researcher at DIPC and a lecturer in the UPV/EHU's Department of Applied Physics.

####

For more information, please click here

Contacts:
Matxalen Sotillo

34-688-673-770

Copyright © University of Basque Country

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bibliographical reference

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project