Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using mathematics to improve human health

The picture shows a model of one of the SAPN particles that has been constructed by Newton Wahome based on a tiling by Giuliana Indelicato, illustrating how tiling theory predicts the surface architecture of the nanoparticle. Wahome and Indelicato are the joint first authors of this paper.
The picture shows a model of one of the SAPN particles that has been constructed by Newton Wahome based on a tiling by Giuliana Indelicato, illustrating how tiling theory predicts the surface architecture of the nanoparticle. Wahome and Indelicato are the joint first authors of this paper.

Abstract:
Scientists at the Universities of York and Torino have used mathematics as a tool to provide precise details of the structure of protein nanoparticles, potentially making them more useful in vaccine design.

Using mathematics to improve human health

York. UK | Posted on February 3rd, 2016

Working with a world-leading group at the University of Connecticut in the USA, who pioneered the development of self-assembling protein nanoparticles (SAPNs) for vaccine design, they have used advanced mathematical calculations to create a complete picture of the surface morphology of these particles. The research is published in the Biophysical Journal.

The nanoparticles self-assemble symmetrically using protein building blocks to create cage or shell-like architectures, which serve a range of functions such as storage, catalysis and structural scaffolding, or as enclosures for viral genomes. But electron microscopy and neutron scattering data has limited effectiveness for researchers attempting to classify the morphology of the nanoparticles.

Using mathematics to predict the geometries of nanoparticles can help scientists to select those whose structures are the most advantageous for the design of new vaccines. The constant need for vaccine development as new strains of disease evolve has generated a world market worth $56 billion a year.

The new study focused on a class of artificial SAPNs designed by Professor Peter Burkhard, a structural biophysicist at the University of Connecticut. When chemically attached to antigens from pathogens, nanoparticles can create simple, potent and cost-effective vaccines. Clinical tests on a malaria vaccine designed in this way are due to start soon.

Researchers at York and Torino, led by biophysicist Professor Reidun Twarock, of the University of York's York Centre for Complex Systems Analysis and the Departments of Mathematics and Biology, used a mathematical tool called tiling theory to predict the symmetric classification of different particle morphologies of SAPNs. They adapted the tiling approach Professor Twarock previously pioneered in the context of virology to model protein nanoparticles with a mixture of local five- and three-fold symmetry axes.

Professor Twarock said: "We have developed a mathematical approach that allows you to identify the surface structures of these nanoparticles that you cannot get from experimentation alone. Mathematics plays an important role here because it acts like a microscope and helps to give researchers insights they couldn't get experimentally."

Professor Burkhard added: "The protein nanoparticles show great promise as future vaccine carriers and our malaria vaccine will be tested in a clinical setting within the next year. Understanding the geometric principles of the self-assembly to nanoparticles is essential for the successful design and development as vaccines."

####

For more information, please click here

Contacts:
David Garner

44-019-043-22153

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Possible Futures

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Nanomedicine

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Nanobiotechnology

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project